Close association of B2 bradykinin receptors with P2Y2 ATP receptors

Two G-protein-coupled receptors (GPCRs) that couple with Gαq/11, B2 bradykinin (BK) receptor (B2R) and ATP/UTP receptor P2Y2 (P2Y2R), are ubiquitously expressed and responsible for vascular tone, inflammation, and pain. We analysed the cellular signalling of P2Y2Rs in cells that express B2Rs. B2R de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biochemistry (Tokyo) 2015-08, Vol.158 (2), p.155-163
Hauptverfasser: Yashima, Sayo, Shimazaki, Ayaka, Mitoma, Junya, Nakagawa, Tetsuto, Abe, Maya, Yamada, Hiroyuki, Higashi, Hideyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two G-protein-coupled receptors (GPCRs) that couple with Gαq/11, B2 bradykinin (BK) receptor (B2R) and ATP/UTP receptor P2Y2 (P2Y2R), are ubiquitously expressed and responsible for vascular tone, inflammation, and pain. We analysed the cellular signalling of P2Y2Rs in cells that express B2Rs. B2R desensitization induced by BK or B2R internalization-inducing glycans cross-desensitized the P2Y2R response to ATP/UTP. Fluorescence resonance energy transfer from P2Y2R-AcGFP to B2R-DsRed was detected in the cells and on the cell surfaces, showing the close association of these GPCRs. BK- and ATP-induced cross-internalization of P2Y2R and B2R, respectively, was shown in a β-galactosidase complementation assay using P2Y2R or B2R fused to the H31R substituted α donor peptide of a β-galactosidase reporter enzyme (P2Y2R-α or B2R-α) with coexpression of the FYVE domain of endofin, an early endosome protein, fused to the M15 acceptor deletion mutant of β-galactosidase (the ω peptide, FYVE-ω). Arrestin recruitment to the GPCRs by cross-activation was also shown with the similar way. Coimmunoprecipitation showed that B2R and P2Y2R were closely associated in the cotransfected cells. These results indicate that B2R couples with P2Y2R and that these GPCRs act together to fine-tune cellular responsiveness. The collaboration between these receptors may permit rapid onset and turning off of biological events.
ISSN:1756-2651
DOI:10.1093/jb/mvv022