Protection of plasmid pBR322 DNA by flavonoids against single-strand breaks induced by singlet molecular oxygen
Flavonoids, the dominant colouring pigments of plants, as well as the related polyphenol tannic acid significantly inhibit single-strand breaks in plasmid pBR322 DNA induced by singlet molecular oxygen ( 1O 2). This reactive species of oxygen was generated in an aqueous buffer system by the thermal...
Gespeichert in:
Veröffentlicht in: | Journal of photochemistry and photobiology. B, Biology Biology, 1995-10, Vol.30 (2), p.97-103 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flavonoids, the dominant colouring pigments of plants, as well as the related polyphenol tannic acid significantly inhibit single-strand breaks in plasmid pBR322 DNA induced by singlet molecular oxygen (
1O
2). This reactive species of oxygen was generated in an aqueous buffer system by the thermal dissociation of the endoperoxide of 3,3′-(1,4-naphthylene)dipropionate. Among the antioxidants examined, myricetin showed the highest protective ability, followed by tannic acid, (+) catechin, rutin, fisetin, luteolin and apigenin, when the inhibitory abilities were compared at 90 min after incubation. The protective abilities of these compounds were both time and concentration dependent. At equimolar concentrations (100 μM) the antioxidant effect of myricetin was better than that of other known antioxidants such as lipoate, α-tocopherol and β-carotene. Data, when analysed in relation to the structures of various compounds, showed a rough correlation with protective abilities. Owing to the abundance of these compounds in our normal diet, they may play significant roles in preventing oxidative damage resulting from potentially deleterious
1O
2. |
---|---|
ISSN: | 1011-1344 1873-2682 |
DOI: | 10.1016/1011-1344(95)07159-Y |