Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands

Volcanic vapors were collected during 1990–1993 from the summit crater of Kudryavy, a basaltic andesite volcano on Iturup island in the Kuril arc. The highest temperature (700–940°C) fumarolic discharges are water rich (94–98 mole% H 2O and have δD values of −20 to −12%o. The chemical and water isot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 1995-05, Vol.59 (9), p.1749-1761
Hauptverfasser: Taran, Yu.A., Hedenquist, J.W., Korzhinsky, M.A., Tkachenko, S.I., Shmulovich, K.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Volcanic vapors were collected during 1990–1993 from the summit crater of Kudryavy, a basaltic andesite volcano on Iturup island in the Kuril arc. The highest temperature (700–940°C) fumarolic discharges are water rich (94–98 mole% H 2O and have δD values of −20 to −12%o. The chemical and water isotope compositions of the vapors (temperature of thirteen samples, 940 to 130°C) show a simple trend of mixing between hot magmatic fluid and meteoric water; the magmatic parent vapor is similar in composition to altered seawater. The origin of this endmember is not known; it may be connate seawater, or possibly caused by the shallow incorporation of seawater into the magmatic-hydrothermal system. Samples of condensed vapor from 535 to 940°C fumaroles have major element trends indicating contamination by wall-rock particles. However, the enrichment factors (relative to the host rock) of many of the trace elements indicate another source; these elements likely derive from a degassing magma. The strongest temperature dependence is for Re, Mo, W, Cu, and Co; highly volatile elements such as Cl, I, F, Bi, Cd, B, and Br show little temperature dependence. The Re abundance in high-temperature condensates is 2–10 ppb, sufficient to form the pure Re sulfide recently discovered in sublimates of Kudryavy. Anomalously high I concentrations (1–12 ppm) may be caused by magma-marine sediment interaction, as Br/I ratios are similar to those in marine sediments. The high-temperature (>700°C) fumaroles have a relatively constant composition (∼2 mol% each C and S species, with SO 2/H 2S ratio of about 3:1, and 0.5 mol% HCl); as temperature decreases, both S t and CI are depleted, most likely due to formation of native S and HCl absorption by condensed liquid, in addition to the dilution by meteoric water. Thermochemical evaluation of the high-temperature gas compositions indicates they are close to equilibrium mixtures, apart from minor loss of H 2O and oxidation of CO and H 2 during sampling. Calculation to an assumed equilibrium state indicates temperatures from 705 to 987°C. At high temperature (≈900°C), the redox states are close to the overlap of mineral (quartz-fayalite-magnetite and nickel-nickel oxide) and gas (H 2OH 2SO 2H 2S) buffer curves, due to heterogeneous reaction between the melt and gas species. At lower temperatures (
ISSN:0016-7037
1872-9533
DOI:10.1016/0016-7037(95)00079-F