Why What Juveniles Do Matters in the Evolution of Cooperative Breeding

The evolution of cooperative breeding is complex, and particularly so in humans because many other life history traits likely evolved at the same time. While cooperative childrearing is often presumed ancient, the transition from maternal self-reliance to dependence on allocare leaves no known empir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human nature (Hawthorne, N.Y.) N.Y.), 2014-03, Vol.25 (1), p.49-65
1. Verfasser: Kramer, Karen L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of cooperative breeding is complex, and particularly so in humans because many other life history traits likely evolved at the same time. While cooperative childrearing is often presumed ancient, the transition from maternal self-reliance to dependence on allocare leaves no known empirical record. In this paper, an exploratory model is developed that incorporates probable evolutionary changes in birth intervals, juvenile dependence, and dispersal age to predict under what life history conditions mothers are unable to raise children without adult cooperation. The model’s outcome variable (net balance) integrates dependent children’s production and consumption as a function of varying life history parameters to estimate the investment mothers or others have to spend subsidizing children. Results suggest that maternal-juvenile cooperation can support the early transition toward a reduction in birth intervals, a longer period of juvenile dependence, and having overlapping young. The need for adult cooperation is most evident when birth intervals are short and age at net production is late. Findings suggest that the needs of juveniles would not have been an early selective force for adult cooperation. Rather, an age-graded division of labor and the mutual benefits of maternal-juvenile cooperation could be an important, but overlooked step in the evolution of cooperative breeding.
ISSN:1045-6767
1936-4776
DOI:10.1007/s12110-013-9189-5