Core–shell designed scaffolds for drug delivery and tissue engineering
[Display omitted] Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core–shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzl...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2015-07, Vol.21, p.2-19 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core–shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core–shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core–shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment. |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2015.03.013 |