Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials
We have demonstrated a straightforward strategy to realize magnetic field enhancement through diffraction coupling of magnetic plasmon (MP) resonances by embedding the metamaterials consisting of a planar rectangular array of U-shaped metallic split-ring resonators (SRRs) into the substrate. Our met...
Gespeichert in:
Veröffentlicht in: | Optics express 2015-06, Vol.23 (12), p.16238-16245 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have demonstrated a straightforward strategy to realize magnetic field enhancement through diffraction coupling of magnetic plasmon (MP) resonances by embedding the metamaterials consisting of a planar rectangular array of U-shaped metallic split-ring resonators (SRRs) into the substrate. Our method provides a more homogeneous dielectric background allowing stronger diffraction coupling of MP resonances among SRRs leading to strong suppression of the radiative damping. We observe that compared to the on-substrate metamaterials, the embedded ones lead to a narrow-band hybridized MP mode, which results from the interference between MP resonances in individual SRRs and an in-plane propagating collective surface mode arising from light diffraction. Associated with the excitation of this hybridized MP mode, a twenty-seven times enhancement of magnetic fields within the inner area of the SRRs is achieved as compared with the pure MP resonance. Moreover, we also found that besides the above requirement of homogeneous dielectric background, only a collective surface mode with its magnetic field of the same direction as the induced magnetic moment in the SRRs could mediate the excitation of such a hybridized MP mode. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.23.016238 |