Dynamics of stimulated Brillouin scattering in optical fibers without external feedback induced by frequency detuning from resonance

In optical fibers, stimulated Brillouin scattering are usually investigated in the regime of resonance. Whereas, in this paper, we discover for the first time that, without participation of Kerr effect, frequency detuning from resonance can give rise to rich dynamical behaviors for stimulated Brillo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2015-07, Vol.23 (14), p.18117-18132
Hauptverfasser: Lü, Haibin, Zhou, Pu, Wang, Xiaolin, Jiang, Zongfu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In optical fibers, stimulated Brillouin scattering are usually investigated in the regime of resonance. Whereas, in this paper, we discover for the first time that, without participation of Kerr effect, frequency detuning from resonance can give rise to rich dynamical behaviors for stimulated Brillouin scattering in optical fibers. Distinct from the dynamics presented in the conventional Brillouin lasers, this kind of phenomena does not need external feedback at all but also presents a variety of classifiable dynamical features for continuous-wave pumping, including steady state, periodic state and chaos. We analyze that the main mechanisms responsible for these dynamical behaviors include the transient response of acoustic wave, relaxation oscillation, frequency mixing effect induced by three-wave coherent coupling and Brillouin gain-induced group velocity change. Moreover, it should be pointed that it is the first time to discover in theory that there exists the frequency mixing effect induced by three-wave coherent coupling in the regime of non-resonance for the stimulated Brillouin scattering process, which as a consequence determines the periodic state.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.23.018117