Hydraulic conductivity and diffusion monitoring of the Keele Valley Landfill liner, Maple, Ontario
The 99-ha Keele Valley Landfill is located in a former sand and gravel pit at Maple, Ontario. The base and sides of the pit are lined with a minimum of 1.2 m of excavated clayey silt till recompacted to achieve a design hydraulic conductivity of 1 × 10 −8 cm/s or less. Extensive construction contro...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 1993-02, Vol.30 (1), p.124-134 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The 99-ha Keele Valley Landfill is located in a former sand and gravel pit at Maple, Ontario. The base and sides of the pit are lined with a minimum of 1.2 m of excavated clayey silt till recompacted to achieve a design hydraulic conductivity of 1 × 10
−8
cm/s or less. Extensive construction controls and monitoring programs have been implemented to determine the hydraulic conductivity and advective performance of the liner. A total of 267 postcompaction laboratory hydraulic conductivity (k) tests indicated that the first two stages of the liner had a geometric mean k of 7.7 × 10
−9
cm/s. Calculations of in situ hydraulic conductivity based on lysimeter effluent collection rates show decreases in k to field values close to the laboratory values. In situ electrical conductivity sensors and lysimeter effluent chemistry measurements have monitored the advance of leachate-derived chemicals into the liner. Concurrent field verification by liner exhumation and chemical analysis has confirmed the importance of diffusion as the dominant migration mechanism through this low-k liner. Similar concentration trends for major ions have been observed in the field lysimeter effluents, effluents from laboratory liner-leachate compatibility tests, and pore water extracted from core samples of sections of exhumed liner exposed to leachate. The multicomponent field and laboratory testing and monitoring programs have shown good cross-agreement, and the actual performance of the liner has been close to preconstruction predictions. Key words : landfill, clayey liner, field hydraulic conductivity, field diffusion, municipal solid waste leachate, field lysimeter test, laboratory hydraulic conductivity, liner-leachate compatibility. |
---|---|
ISSN: | 0008-3674 1208-6010 |
DOI: | 10.1139/t93-011 |