The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection
The healthy human intestine is colonized by as many as 1014 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota. The microbiota's various bacterial members engage in a physiological network of cooperation and compet...
Gespeichert in:
Veröffentlicht in: | Microbiology spectrum 2015-06, Vol.3 (3) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The healthy human intestine is colonized by as many as 1014 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota. The microbiota's various bacterial members engage in a physiological network of cooperation and competition within several layers of complexity. Within the last 10 years, technological progress in the field of next-generation sequencing technologies has tremendously advanced our understanding of the wide variety of physiological and pathological processes that are influenced by the commensal microbiota (1, 2). An increasing number of human disease conditions, such as inflammatory bowel diseases (IBD), type 2 diabetes, obesity, allergies and colorectal cancer are linked with altered microbiota composition (3). Moreover, a clearer picture is emerging of the composition of the human microbiota in healthy individuals, its variability over time and between different persons and how the microbiota is shaped by environmental factors (i.e., diet) and the host's genetic background (4). A general feature of a normal, healthy gut microbiota can generate conditions in the gut that disfavor colonization of enteric pathogens. This is termed colonization-resistance (CR). Upon disturbance of the microbiota, CR can be transiently disrupted, and pathogens can gain the opportunity to grow to high levels. This disruption can be caused by exposure to antibiotics (5, 6), changes in diet (7, 8), application of probiotics and drugs (9), and a variety of diseases (3). Breakdown of CR can boost colonization by intrinsic pathogens or increase susceptibility to infections (10). One consequence of pathogen expansion is the triggering of inflammatory host responses and pathogen-mediated disease. Interestingly, human enteric pathogens are part of a small group of bacterial families that belong to the Proteobacteria: the Enterobacteriaceae (E. coli, Yersinia spp., Salmonella spp., Shigella spp.), the Vibrionaceae (Vibrio cholerae) and the Campylobacteriaceae (Campylobacter spp.). In general, members of these families (be it commensals or pathogens) only constitute a minority of the intestinal microbiota. However, proteobacterial "blooms" are a characteristic trait of an abnormal microbiota such as in the course of antibiotic therapy, dietary changes or inflammation (11). It has become clear that the gut microbiota not only plays a major role in priming and regulating mucosal and systemic immunity, |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/microbiolspec.mbp-0008-2014 |