Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments
Broadband photodetection is central to various technological applications including imaging, sensing and optical communications. On account of their Dirac-like surface state, Topological insulators (TIs) are theoretically predicted to be promising candidate materials for broadband photodetection fro...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2015-08, Vol.7 (29), p.12535-12541 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Broadband photodetection is central to various technological applications including imaging, sensing and optical communications. On account of their Dirac-like surface state, Topological insulators (TIs) are theoretically predicted to be promising candidate materials for broadband photodetection from the infrared to the terahertz. Here, we report a vertically-constructed ultra-broadband photodetector based on a TI Bi2Te3-Si heterostructure. The device demonstrated room-temperature photodetection from the ultraviolet (370.6 nm) to terahertz (118 μm) with good reproducibility. Under bias conditions, the visible responsivity reaches ca. 1 A W(-1) and the response time is better than 100 ms. As a self-powered photodetector, it exhibits extremely high photosensitivity approaching 7.5 × 10(5) cm(2) W(-1), and decent detectivity as high as 2.5 × 10(11) cm Hz(1/2) W(-1). In addition, such a prototype device without any encapsulation suffers no obvious degradation after long-time exposure to air, high-energy UV illumination and acidic treatment. In summary, we demonstrate that TI-based heterostructures hold great promise for addressing the long lasting predicament of stable room-temperature high-performance broadband photodetectors. |
---|---|
ISSN: | 2040-3372 |
DOI: | 10.1039/c5nr02953h |