Cell-extracellular matrix interactions under in vivo conditions during interstitial cell migration in Hydra vulgaris

Interstitial cell (I-cell) migration in hydra is essential for establishment of the regional cell differentiation pattern in the organism. All previous in vivo studies have indicated that cell migration in hydra is a result of cell-cell interactions and chemotaxic gradients. Recently, in vitro cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 1994-02, Vol.120 (2), p.425-432
Hauptverfasser: Zhang, X, Sarras, Jr, M P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interstitial cell (I-cell) migration in hydra is essential for establishment of the regional cell differentiation pattern in the organism. All previous in vivo studies have indicated that cell migration in hydra is a result of cell-cell interactions and chemotaxic gradients. Recently, in vitro cell adhesion studies indicated that isolated nematocytes could bind to substrata coated with isolated hydra mesoglea, fibronectin and type IV collagen. Under these conditions, nematocytes could be observed to migrate on some of these extracellular matrix components. By modifying previously described hydra grafting techniques, two procedures were developed to test specifically the role of extracellular matrix components during in vivo I-cell migration in hydra. In one approach, the extracellular matrix structure of the apical half of the hydra graft was perturbed using beta-aminopropionitrile and beta-xyloside. In the second approach, grafts were treated with fibronectin, RGDS synthetic peptide and antibody to fibronectin after grafting was performed. In both cases, I-cell migration from the basal half to the apical half of the grafts was quantitatively analyzed. Statistical analysis indicated that beta-aminopropionitrile, fibronectin, RGDS synthetic peptide and antibody to fibronectin all were inhibitory to I-cell migration as compared to their respective controls. beta-xyloside treatment had no effect on interstitial cell migration. These results indicate the potential importance of cell-extracellular matrix interactions during in vivo I-cell migration in hydra.
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.120.2.425