The Inhibitory Effects of Cu(2+) on Exopalaemon carinicauda Arginine Kinase via Inhibition Kinetics and Molecular Dynamics Simulations

We studied the Cu(2+)-mediated inhibition and aggregation of Exopalaemon carinicauda arginine kinase (ECAK). We found that Cu(2+) significantly inactivated ECAK activity and double-reciprocal kinetics demonstrated that Cu(2+) induced noncompetitive inhibition of arginine and ATP (IC50 = 2.27 ± 0.16 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2015-06, Vol.176 (4), p.1217-1236
Hauptverfasser: Si, Yue-Xiu, Lee, Jinhyuk, Yin, Shang-Jun, Gu, Xiao-Xu, Park, Yong-Doo, Qian, Guo-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the Cu(2+)-mediated inhibition and aggregation of Exopalaemon carinicauda arginine kinase (ECAK). We found that Cu(2+) significantly inactivated ECAK activity and double-reciprocal kinetics demonstrated that Cu(2+) induced noncompetitive inhibition of arginine and ATP (IC50 = 2.27 ± 0.16 μM; K i for arginine = 13.53 ± 3.76; K i for ATP = 4.02 ± 0.56). Spectrofluorometry results showed that Cu(2+) induced ECAK tertiary structural changes including the exposure of hydrophobic surfaces that directly induced ECAK aggregation. The addition of osmolytes such as glycine and proline successfully blocked ECAK aggregation induced by Cu(2+) and recovered ECAK activity. We built a 3D structure for ECAK using the ECAK ORF gene sequence. Molecular dynamics (MD) and docking simulations between ECAK and Cu(2+) were conducted to elucidate the binding mechanisms. The results showed that Cu(2+) blocked the entrance to the ATP active site; these results are consistent with the experimental result that Cu(2+) induced ECAK inactivation. Since arginine kinase (AK) plays an important role in cellular energy metabolism in invertebrates, our study can provide new information about the effect of Cu(2+) on ECAK enzymatic function and unfolding, including aggregation, and the protective effects of osmolytes on ECAK folding to better understand the role of the invertebrate ECAK metabolic enzyme in marine environments.
ISSN:1559-0291
DOI:10.1007/s12010-015-1641-z