The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: Functional Evolution and Molecular Mechanisms
In plant development, the flowering transition and inflorescence architecture are modulated by two homol- ogous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). The florigen FT promotes the transition to reproductive development and flowering, while TFL1 represses this transition. Desp...
Gespeichert in:
Veröffentlicht in: | Molecular plant 2015-07, Vol.8 (7), p.983-997 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In plant development, the flowering transition and inflorescence architecture are modulated by two homol- ogous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). The florigen FT promotes the transition to reproductive development and flowering, while TFL1 represses this transition. Despite their importance to plant adaptation and crop improvement and their extensive study by the plant community, the molecular mechanisms controlling the opposing actions of FT and TFL1 have remained mysterious. Recent studies in multiple species have unveiled diverse roles of the FT/TFL 1 gene family in developmental processes other than flowering regulation. In addition, the striking evolution of FT homologs into flowering repressors has occurred independently in several species during the evolution of flowering plants. These reports indicate that the FT/TFL1 gene family is a major target of evolution in nature. Here, we comprehen- sively survey the conserved and diverse functions of the FTITFL1 gene family throughout the plant kingdom, summarize new findings regarding the unique evolution of FT in multiple species, and highlight recent work elucidating the molecular mechanisms of these proteins. |
---|---|
ISSN: | 1674-2052 1752-9867 |
DOI: | 10.1016/j.molp.2015.01.007 |