Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis

Composites consisting of nanoparticles of iron oxides and graphene have attracted considerable attention in numerous applications; however, the synthesis methods used to achieve superior functionalities are often complex and unamenable to low-cost large-scale industrial production. Here, we report o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-07, Vol.7 (26), p.14446-14455
Hauptverfasser: Zhao, Bote, Zheng, Yao, Ye, Fei, Deng, Xiang, Xu, Xiaomin, Liu, Meilin, Shao, Zongping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Composites consisting of nanoparticles of iron oxides and graphene have attracted considerable attention in numerous applications; however, the synthesis methods used to achieve superior functionalities are often complex and unamenable to low-cost large-scale industrial production. Here, we report our findings in exploring a simple strategy for low-cost fabrication of multifunctional composites with enhanced properties. In particular, we have successfully prepared FeO­(OH) nanoflake/graphene and nano-Fe3O4/graphene composites from commercially available Fe powders and graphite oxides using a simple and low-cost solid-state process, where the metallic Fe is converted to FeO­(OH) nanoflake and graphite oxide is reduced/exfoliated to graphene. The resultant nano-Fe3O4/graphene composite is multifunctional, demonstrates specific capacities of 802 and 629 mA h g–1, respectively, at 1000 and 2000 mA g–1 as an electrode material for lithium-ion batteries (LIBs), and also displays efficient catalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER); the nominal overpotentials are lower than those for previously reported metal-based catalysts (e.g., IrO2, RuO2, and Pt/C). The dramatically enhanced properties are attributed to the synergistic mechanochemical coupling effects between iron oxide and graphene introduced by the facile process, which is well suited for large-scale cost-effective fabrication.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.5b03477