Dynamical Evolution of Anisotropic Response in Black Phosphorus under Ultrafast Photoexcitation

Black phosphorus has recently emerged as a promising material for high-performance electronic and optoelectronic device for its high mobility, tunable mid-infrared bandgap, and anisotropic electronic properties. Dynamical evolution of photoexcited carriers and the induced transient change of electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-07, Vol.15 (7), p.4650-4656
Hauptverfasser: Ge, Shaofeng, Li, Chaokai, Zhang, Zhiming, Zhang, Chenglong, Zhang, Yudao, Qiu, Jun, Wang, Qinsheng, Liu, Junku, Jia, Shuang, Feng, Ji, Sun, Dong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Black phosphorus has recently emerged as a promising material for high-performance electronic and optoelectronic device for its high mobility, tunable mid-infrared bandgap, and anisotropic electronic properties. Dynamical evolution of photoexcited carriers and the induced transient change of electronic properties are critical for materials’ high-field performance but remain to be explored for black phosphorus. In this work, we perform angle-resolved transient reflection spectroscopy to study the dynamical evolution of anisotropic properties of black phosphorus under photoexcitation. We find that the anisotropy of reflectivity is enhanced in the pump-induced quasi-equilibrium state, suggesting an extraordinary enhancement of the anisotropy in dynamical conductivity in hot carrier dominated regime. These results raise attractive possibilities of creating high-field, angle-sensitive electronic, optoelectronic, and remote sensing devices exploiting the dynamical electronic anisotropy with black phosphorus.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.5b01409