Fine mapping of qSS‐9, a major and stable quantitative trait locus, for seed storability in rice (Oryza sativa L.)
Seed storability in rice (Oryza sativa L.) is an important agronomic trait. We previously showed a quantitative trait locus of seed storability, qSS‐9, on chromosome 9 in a backcross population of ‘Koshihikari’ (japonica) / ‘Kasalath’ (indica) // ‘Koshihikari’. In this study, fine mapping of the chr...
Gespeichert in:
Veröffentlicht in: | Plant breeding 2015-06, Vol.134 (3), p.293-299 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Seed storability in rice (Oryza sativa L.) is an important agronomic trait. We previously showed a quantitative trait locus of seed storability, qSS‐9, on chromosome 9 in a backcross population of ‘Koshihikari’ (japonica) / ‘Kasalath’ (indica) // ‘Koshihikari’. In this study, fine mapping of the chromosomal location of qSS‐9 was performed. Effect of ‘Kasalath’ allele of qSS‐9 was validated using a chromosome segment substitution line, SL36, which harboured the target quantitative trait loci (QTL) from ‘Kasalath’ in the genetic background of ‘Nipponbare’ under different ageing treatments in different environments. Subsequently, an F₂ population from a cross between ‘Nipponbare’ and SL36 was used for fine mapping of qSS‐9. Simultaneously, four subnear isogenic lines (sub‐NILs) that represented different recombination breakpoints across the qSS‐9 region were developed from F₃ progeny. Finally, the qSS‐9 locus was located between the Indel markers Y10 and Y13, which delimit a region of 147 kb in the ‘Nipponbare’ genome. These results provide a springboard for map‐based cloning of qSS‐9 and possibilities for breeding rice varieties with strong seed storability. |
---|---|
ISSN: | 0179-9541 1439-0523 |
DOI: | 10.1111/pbr.12264 |