Metabolism and quantification of [(18)F]DPA-714, a new TSPO positron emission tomography radioligand

[(18)F]DPA-714 [N,N-diethyl-2-(2-(4-(2[(18)F]-fluoroethoxy)phenyl)5,7dimethylpyrazolo[1,5a]pyrimidin-3-yl)acetamide] is a new radioligand currently used for imaging the 18-kDa translocator protein in animal models of neuroinflammation and recently in humans. The biodistribution by positron emission...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug metabolism and disposition 2013-01, Vol.41 (1), p.122-131
Hauptverfasser: Peyronneau, Marie-Anne, Saba, Wadad, Goutal, Sébastien, Damont, Annelaure, Dollé, Frédéric, Kassiou, Michael, Bottlaender, Michel, Valette, Héric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[(18)F]DPA-714 [N,N-diethyl-2-(2-(4-(2[(18)F]-fluoroethoxy)phenyl)5,7dimethylpyrazolo[1,5a]pyrimidin-3-yl)acetamide] is a new radioligand currently used for imaging the 18-kDa translocator protein in animal models of neuroinflammation and recently in humans. The biodistribution by positron emission tomography (PET) in baboons and the in vitro and in vivo metabolism of [(18)F]DPA-714 were investigated in rats, baboons, and humans. Whole-body PET experiments showed a high uptake of radioactivity in the kidneys, heart, liver, and gallbladder. The liver was a major route of elimination of [(18)F]DPA-714, and urine was a route of excretion for radiometabolites. In rat and baboon plasma, high-performance liquid chromatography (HPLC) metabolic profiles showed three major radiometabolites accounting for 85% and 89% of total radioactivity at 120 minutes after injection, respectively. Rat microsomal incubations and analyses by liquid chromatography-mass spectrometry (LC-MS) identified seven metabolites, characterized as O-deethyl, hydroxyl, and N-deethyl derivatives of nonradioactive DPA-714, two of them having the same retention times than those detected in rat and baboon plasma. The third plasma radiometabolite was suggested to be a carboxylic acid compound that accounted for 15% of the rat brain radioactivity. O-deethylation led to a nonradioactive compound and [(18)F]fluoroacetic acid. Human CYP3A4 and CYP2D6 were shown to be involved in the oxidation of the radioligand. Finally an easy, rapid, and accurate method--indispensable for PET quantitative clinical studies--for quantifying [(18)F]DPA-714 by solid-phase extraction was developed. In vivo, an extensive metabolism of [(18)F]DPA-714 was observed in rats and baboons, identified as [(18)F]deethyl, [(18)F]hydroxyl, and [(18)F]carboxylic acid derivatives of [(18)F]DPA-714. The main route of excretion of the unchanged radioligand in baboons was hepatobiliary while that of radiometabolites was the urinary system.
ISSN:0090-9556
1521-009X
DOI:10.1124/dmd.112.046342