Hierarchical multi-label classification with SVMs: A case study in gene function prediction
Hierarchical multi-label classification is a relatively new research topic in the field of classifier induction. What distinguishes it from earlier tasks is that it allows each example to belong to two or more classes at the same time, and by assuming that the classes are mutually related by general...
Gespeichert in:
Veröffentlicht in: | Intelligent data analysis 2014-01, Vol.18 (4), p.717-738 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hierarchical multi-label classification is a relatively new research topic in the field of classifier induction. What distinguishes it from earlier tasks is that it allows each example to belong to two or more classes at the same time, and by assuming that the classes are mutually related by generalization/specialization operators. The paper first investigates the problem of performance evaluation in these domains. After this, it proposes a new induction system, HR-SVM, built around support vector machines. In our experiments, we demonstrate that this system's performance compares favorably with that earlier attempts, and then we proceed to an investigation of how HR-SVM's individual modules contribute to the overall system's behavior. As a testbed, we use a set of benchmark domains from the field of gene-function prediction. |
---|---|
ISSN: | 1088-467X 1571-4128 |
DOI: | 10.3233/IDA-140665 |