Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia
Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural corre...
Gespeichert in:
Veröffentlicht in: | The European journal of neuroscience 2015-07, Vol.42 (1), p.1644-1650 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural correlates suggested to lie beyond auditory cortices. Here we show, using auditory brainstem responses to complex sounds in humans, that fine‐grained automatic processing of sounds is impoverished in amusia. Compared with matched non‐musician controls, spectral amplitude was decreased in amusics for higher harmonic components of the auditory brainstem response. We also found a delayed response to the early transient aspects of the auditory stimulus in amusics. Neural measures of spectral amplitude and response timing correlated with participants' behavioral assessments of music processing. We demonstrate, for the first time, that amusia affects how complex acoustic signals are processed in the auditory brainstem. This neural signature of amusia mirrors what is observed in musicians, such that the aspects of the auditory brainstem responses that are enhanced in musicians are degraded in amusics. By showing that gradients of music abilities are reflected in the auditory brainstem, our findings have implications not only for current models of amusia but also for auditory functioning in general.
We examined subcortical auditory processing in congenital amusia. We report a selective impairment that negatively mirrors the enhancements previously found in musicians: slower processing and less robust harmonic encoding of the auditory brainstem response of amusics compared to non‐musician matched controls. This work has implications for current models of amusia, as well as theories of auditory plasticity more generally. |
---|---|
ISSN: | 0953-816X 1460-9568 |
DOI: | 10.1111/ejn.12931 |