Real-Time Monitoring of In Situ Gas-Phase H/D Exchange Reactions of Cations by Atmospheric Pressure Helium Plasma Ionization Mass Spectrometry (HePI-MS)

An enclosed atmospheric-pressure helium-plasma ionization (HePI-MS) source avoids, or minimizes, undesired back-exchange reactions usually encountered during deuterium incorporation experiments under ambient-pressure open-source conditions. A simple adaptation of an ESI source provides an economical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2014-01, Vol.86 (1), p.928-935
Hauptverfasser: Attygalle, Athula B, Gangam, Rekha, Pavlov, Julius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An enclosed atmospheric-pressure helium-plasma ionization (HePI-MS) source avoids, or minimizes, undesired back-exchange reactions usually encountered during deuterium incorporation experiments under ambient-pressure open-source conditions. A simple adaptation of an ESI source provides an economical way of conducting gas phase hydrogen/deuterium (H/D) exchange reactions (HDX) in real time without the need for complicated hardware modifications. For example, the spectrum of [2H8]toluene recorded under exposed ambient conditions showed the base peak at m/z 96 due to fast leaching of ring hydrogens because of interactions with H2O vapor present in the open source. Such D/H exchanges are rapidly reversed if the deuterium-depleted [2H8]toluene is exposed to D2O vapor. In addition to the enumeration of labile protons, our procedure enables the identification of protonation sites in molecules unambiguously, by the number of H/D exchanges observed in real time. For example, molecules such as tetrahydrofuran and pyridine protonate at the heteroatom and consequently undergo only one H/D exchange, whereas ethylbenzene, which protonates at a ring position of the aromatic ring, undergoes six H/D exchanges. In addition, carbocations generated in situ by in-source fragmentation of precursor protonated species, such as benzyl alcohol, do not undergo any rapid H/D exchanges. Because radical cations, second-generation cations (ions formed by losing a small molecule from a precursor ion), or those formed by hydride abstraction do not undergo rapid H/D exchanges, our technique provides a way to distinguish these ions from protonated molecules.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac403634t