Poly(Thymine)-Templated Fluorescent Copper Nanoparticles for Ultrasensitive Label-Free Nuclease Assay and Its Inhibitors Screening
Noble-metal fluorescent nanoparticles have attracted considerable interest on account of their excellent properties and potential applicable importance in many fields. Particularly, we recently found that poly(thymine) (poly T) could template the formation of fluorescent copper nanoparticles (CuNPs)...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2013-12, Vol.85 (24), p.12138-12143 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Noble-metal fluorescent nanoparticles have attracted considerable interest on account of their excellent properties and potential applicable importance in many fields. Particularly, we recently found that poly(thymine) (poly T) could template the formation of fluorescent copper nanoparticles (CuNPs), offering admirable potential as novel functional biochemical probes. However, exploration of poly T-templated CuNPs for application is still at a very early stage. We report herein for the first example to develop a novel ultrasensitive label-free method for the nuclease (S1 nuclease as a model system) assay, and its inhibitors screening using the poly T-templated fluorescent CuNPs. In this assay, the signal reporter of poly T of 30 mer (T30) kept the original long state in the absence of nuclease, which could effectively template the formation of fluorescent CuNPs. In the presence of nuclease, poly T was digested to mono- or oligonucleotide fragments with decrease of fluorescence. The proposed method was low-cost and simple in its operation without requirement for complex labeling of probe DNA or sophisticated synthesis of the fluorescent compound. The assay process was very rapid with only 5 min for the formation of fluorescent CuNPs. The capabilities for target detection from complex fluids and screening of nuclease inhibitors were verified. A high sensitivity exhibited with a detectable minimum concentration of 5 × 10–7 units μL–1 S1 nuclease, which was about 1–4 orders of magnitude more sensitive than the developed approaches. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac403354c |