Multicomponent Adsorption and Desorption of BTX Compounds Using Coconut Shell Activated Carbon: Experiments, Mathematical Modeling, and Numerical Simulation

A numerical and experimental study of the monocomponent and multicomponent adsorption and desorption of BTX compounds (benzene, toluene, and o-xylene) in a batch reactor and fixed-bed column was carried out in aqueous solution at 23 °C, using coconut shell activated carbon as the adsorbent. The mono...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2013-06, Vol.52 (23), p.7896-7911
Hauptverfasser: Luz, Adriana Dervanoski, Guelli Ulson de Souza, Selene Maria de Arruda, da Luz, Cleuzir, Rezende, Ricardo Vicente de Paula, Ulson de Souza, Antônio Augusto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical and experimental study of the monocomponent and multicomponent adsorption and desorption of BTX compounds (benzene, toluene, and o-xylene) in a batch reactor and fixed-bed column was carried out in aqueous solution at 23 °C, using coconut shell activated carbon as the adsorbent. The monocomponent Langmuir isotherm model best represented the experimental results (average R 2 = 0.9952) and the multicomponent Langmuir model, using the multicomponent parameters, represented the multicomponent data obtained in a fixed-bed column better than the monocomponent model. The equations which describe the phenomenology were discretized using the Finite Volumes Method with the WUDS and CDS formulations. The results for the monocomponent breakthrough curves obtained through simulation showed good agreement when compared with the experimental data (maximum error of 11.52%). For the monocomponent breakthrough curves the greatest deviation was observed for the compound which had the least affinity for the solid phase (benzene). The best results for the desorption of the BTX compounds from the adsorbent were obtained using ethanol as the desorbent solvent, and the average removal percentages in three cycles of regeneration in the column were 90% for benzene, 82% for toluene, and 78% for o-xylene.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie302849j