Ultrasensitive Electrochemical Biosensor for Detection of DNA from Bacillus subtilis by Coupling Target-Induced Strand Displacement and Nicking Endonuclease Signal Amplification

A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2014-09, Vol.86 (17), p.8785-8790
Hauptverfasser: Hu, Yuhua, Xu, Xueqin, Liu, Qionghua, Wang, Ling, Lin, Zhenyu, Chen, Guonan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s blank level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac502008k