IUPAC-Consistent Approach to the Limit of Detection in Partial Least-Squares Calibration

There is currently no well-defined procedure for providing the limit of detection (LOD) in multivariate calibration. Defining an estimator for the LOD in this scenario has shown to be more complex than intuitively extending the traditional univariate definition. For these reasons, although many atte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2014-08, Vol.86 (15), p.7858-7866
Hauptverfasser: Allegrini, Franco, Olivieri, Alejandro C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is currently no well-defined procedure for providing the limit of detection (LOD) in multivariate calibration. Defining an estimator for the LOD in this scenario has shown to be more complex than intuitively extending the traditional univariate definition. For these reasons, although many attempts have been made to arrive at a reasonable convention, additional effort is required to achieve full agreement between the univariate and multivariate LOD definitions. In this work, a novel approach is presented to estimate the LOD in partial least-squares (PLS) calibration. Instead of a single LOD value, an interval of LODs is provided, which depends on the variation of the background composition in the calibration space. This is in contrast with previously proposed univariate extensions of the LOD concept. With the present definition, the LOD interval becomes a parameter characterizing the overall PLS calibration model, and not each test sample in particular, as has been proposed in the past. The new approach takes into account IUPAC official recommendations, and also the latest developments in error-in-variables theory for PLS calibration. Both simulated and real analytical systems have been studied for illustrating the properties of the new LOD concept.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac501786u