Conventional- and microwave-hydrothermal synthesis of LiMn2O4: Effect of synthesis on electrochemical energy storage performances

The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize Li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ceramics international 2014-03, Vol.40 (2), p.3155-3163
Hauptverfasser: Chen, Kunfeng, Donahoe, Ailaura C., Noh, Young Dong, Li, Keyan, Komarneni, Sridhar, Xue, Dongfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3163
container_issue 2
container_start_page 3155
container_title Ceramics international
container_volume 40
creator Chen, Kunfeng
Donahoe, Ailaura C.
Noh, Young Dong
Li, Keyan
Komarneni, Sridhar
Xue, Dongfeng
description The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize LiMn2O4 electrode materials with reversible electrochemical reaction in a short reaction time and low reaction temperature than conventional-hydrothermal route. The capacitance of LiMn2O4 electrode increased with increasing crystallization time in conventional-hydrothermal route. The results showed that LiMn2O4 supercapacitors had similar discharge capacity and potential window (1.2V) as that of ordinary lithium-ion battery cathodes. In LiNO3 aqueous electrolyte, the reaction kinetics of LiMn2O4 supercapacitors was very fast. Even, at current densities of 1A/g and 5A/g, aqueous electrolyte gave good capacity compared with that in organic electrolyte at a current density of 0.05A/g.
doi_str_mv 10.1016/j.ceramint.2013.09.128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692379420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272884213012315</els_id><sourcerecordid>1692379420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-7a83bf93b2aacf65ece3db6a49f0984eb9f03bf5dc399a6ac02f59ee3333fcf83</originalsourceid><addsrcrecordid>eNqFUU1rGzEQFaWBukn-QtCxl93oa9ernlpMkgZccknOQtaObJldyZU2Lj7mn2eMG-jNc5lh5r0H8x4hN5zVnPH2dls7yHYMcaoF47Jmuuai-0RmvJvLSuqm_UxmTMxF1XVKfCFfS9kyJGrFZuRtkeIe4hRStENFbezpGFxOf-0eqs2hz2naQB7tQMsh4lhCocnTZfgdxZP6Tu-8BzcdV__dI4UBtzm5DaAakiFCXh9omVK2a6A7yD6hanRQrsiFt0OB63_9krzc3z0vflXLp4fHxc9l5aTSUzW3nVx5LVfCWufbBhzIftVapT3TnYIVdgQ0vZNa29Y6JnyjASSWd76Tl-TbSXeX059XKJMZQ3EwDDZCei0GDRFyrpVg56GN4qrhTEmEticoelZKBm92OYw2Hwxn5hiP2ZqPeMwxHsO0wXiQ-ONEBPx5HyCb4gKgIX3I6J3pUzgn8Q6JGqBH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541451043</pqid></control><display><type>article</type><title>Conventional- and microwave-hydrothermal synthesis of LiMn2O4: Effect of synthesis on electrochemical energy storage performances</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chen, Kunfeng ; Donahoe, Ailaura C. ; Noh, Young Dong ; Li, Keyan ; Komarneni, Sridhar ; Xue, Dongfeng</creator><creatorcontrib>Chen, Kunfeng ; Donahoe, Ailaura C. ; Noh, Young Dong ; Li, Keyan ; Komarneni, Sridhar ; Xue, Dongfeng</creatorcontrib><description>The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize LiMn2O4 electrode materials with reversible electrochemical reaction in a short reaction time and low reaction temperature than conventional-hydrothermal route. The capacitance of LiMn2O4 electrode increased with increasing crystallization time in conventional-hydrothermal route. The results showed that LiMn2O4 supercapacitors had similar discharge capacity and potential window (1.2V) as that of ordinary lithium-ion battery cathodes. In LiNO3 aqueous electrolyte, the reaction kinetics of LiMn2O4 supercapacitors was very fast. Even, at current densities of 1A/g and 5A/g, aqueous electrolyte gave good capacity compared with that in organic electrolyte at a current density of 0.05A/g.</description><identifier>ISSN: 0272-8842</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2013.09.128</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aqueous electrolytes ; Capacitance ; Capacitors ; Cathode ; Crystallization ; Electrode materials ; LiMn2O4 ; LiNO3 aqueous electrolyte ; Lithium batteries ; Lithium-ion battery ; Supercapacitors ; Synthesis</subject><ispartof>Ceramics international, 2014-03, Vol.40 (2), p.3155-3163</ispartof><rights>2013 Elsevier Ltd and Techna Group S.r.l.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-7a83bf93b2aacf65ece3db6a49f0984eb9f03bf5dc399a6ac02f59ee3333fcf83</citedby><cites>FETCH-LOGICAL-c349t-7a83bf93b2aacf65ece3db6a49f0984eb9f03bf5dc399a6ac02f59ee3333fcf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ceramint.2013.09.128$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chen, Kunfeng</creatorcontrib><creatorcontrib>Donahoe, Ailaura C.</creatorcontrib><creatorcontrib>Noh, Young Dong</creatorcontrib><creatorcontrib>Li, Keyan</creatorcontrib><creatorcontrib>Komarneni, Sridhar</creatorcontrib><creatorcontrib>Xue, Dongfeng</creatorcontrib><title>Conventional- and microwave-hydrothermal synthesis of LiMn2O4: Effect of synthesis on electrochemical energy storage performances</title><title>Ceramics international</title><description>The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize LiMn2O4 electrode materials with reversible electrochemical reaction in a short reaction time and low reaction temperature than conventional-hydrothermal route. The capacitance of LiMn2O4 electrode increased with increasing crystallization time in conventional-hydrothermal route. The results showed that LiMn2O4 supercapacitors had similar discharge capacity and potential window (1.2V) as that of ordinary lithium-ion battery cathodes. In LiNO3 aqueous electrolyte, the reaction kinetics of LiMn2O4 supercapacitors was very fast. Even, at current densities of 1A/g and 5A/g, aqueous electrolyte gave good capacity compared with that in organic electrolyte at a current density of 0.05A/g.</description><subject>Aqueous electrolytes</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Cathode</subject><subject>Crystallization</subject><subject>Electrode materials</subject><subject>LiMn2O4</subject><subject>LiNO3 aqueous electrolyte</subject><subject>Lithium batteries</subject><subject>Lithium-ion battery</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><issn>0272-8842</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUU1rGzEQFaWBukn-QtCxl93oa9ernlpMkgZccknOQtaObJldyZU2Lj7mn2eMG-jNc5lh5r0H8x4hN5zVnPH2dls7yHYMcaoF47Jmuuai-0RmvJvLSuqm_UxmTMxF1XVKfCFfS9kyJGrFZuRtkeIe4hRStENFbezpGFxOf-0eqs2hz2naQB7tQMsh4lhCocnTZfgdxZP6Tu-8BzcdV__dI4UBtzm5DaAakiFCXh9omVK2a6A7yD6hanRQrsiFt0OB63_9krzc3z0vflXLp4fHxc9l5aTSUzW3nVx5LVfCWufbBhzIftVapT3TnYIVdgQ0vZNa29Y6JnyjASSWd76Tl-TbSXeX059XKJMZQ3EwDDZCei0GDRFyrpVg56GN4qrhTEmEticoelZKBm92OYw2Hwxn5hiP2ZqPeMwxHsO0wXiQ-ONEBPx5HyCb4gKgIX3I6J3pUzgn8Q6JGqBH</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Chen, Kunfeng</creator><creator>Donahoe, Ailaura C.</creator><creator>Noh, Young Dong</creator><creator>Li, Keyan</creator><creator>Komarneni, Sridhar</creator><creator>Xue, Dongfeng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20140301</creationdate><title>Conventional- and microwave-hydrothermal synthesis of LiMn2O4: Effect of synthesis on electrochemical energy storage performances</title><author>Chen, Kunfeng ; Donahoe, Ailaura C. ; Noh, Young Dong ; Li, Keyan ; Komarneni, Sridhar ; Xue, Dongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-7a83bf93b2aacf65ece3db6a49f0984eb9f03bf5dc399a6ac02f59ee3333fcf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aqueous electrolytes</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Cathode</topic><topic>Crystallization</topic><topic>Electrode materials</topic><topic>LiMn2O4</topic><topic>LiNO3 aqueous electrolyte</topic><topic>Lithium batteries</topic><topic>Lithium-ion battery</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kunfeng</creatorcontrib><creatorcontrib>Donahoe, Ailaura C.</creatorcontrib><creatorcontrib>Noh, Young Dong</creatorcontrib><creatorcontrib>Li, Keyan</creatorcontrib><creatorcontrib>Komarneni, Sridhar</creatorcontrib><creatorcontrib>Xue, Dongfeng</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kunfeng</au><au>Donahoe, Ailaura C.</au><au>Noh, Young Dong</au><au>Li, Keyan</au><au>Komarneni, Sridhar</au><au>Xue, Dongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conventional- and microwave-hydrothermal synthesis of LiMn2O4: Effect of synthesis on electrochemical energy storage performances</atitle><jtitle>Ceramics international</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>40</volume><issue>2</issue><spage>3155</spage><epage>3163</epage><pages>3155-3163</pages><issn>0272-8842</issn><eissn>1873-3956</eissn><abstract>The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize LiMn2O4 electrode materials with reversible electrochemical reaction in a short reaction time and low reaction temperature than conventional-hydrothermal route. The capacitance of LiMn2O4 electrode increased with increasing crystallization time in conventional-hydrothermal route. The results showed that LiMn2O4 supercapacitors had similar discharge capacity and potential window (1.2V) as that of ordinary lithium-ion battery cathodes. In LiNO3 aqueous electrolyte, the reaction kinetics of LiMn2O4 supercapacitors was very fast. Even, at current densities of 1A/g and 5A/g, aqueous electrolyte gave good capacity compared with that in organic electrolyte at a current density of 0.05A/g.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ceramint.2013.09.128</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-8842
ispartof Ceramics international, 2014-03, Vol.40 (2), p.3155-3163
issn 0272-8842
1873-3956
language eng
recordid cdi_proquest_miscellaneous_1692379420
source Elsevier ScienceDirect Journals Complete
subjects Aqueous electrolytes
Capacitance
Capacitors
Cathode
Crystallization
Electrode materials
LiMn2O4
LiNO3 aqueous electrolyte
Lithium batteries
Lithium-ion battery
Supercapacitors
Synthesis
title Conventional- and microwave-hydrothermal synthesis of LiMn2O4: Effect of synthesis on electrochemical energy storage performances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conventional-%20and%20microwave-hydrothermal%20synthesis%20of%20LiMn2O4:%20Effect%20of%20synthesis%20on%20electrochemical%20energy%20storage%20performances&rft.jtitle=Ceramics%20international&rft.au=Chen,%20Kunfeng&rft.date=2014-03-01&rft.volume=40&rft.issue=2&rft.spage=3155&rft.epage=3163&rft.pages=3155-3163&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2013.09.128&rft_dat=%3Cproquest_cross%3E1692379420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541451043&rft_id=info:pmid/&rft_els_id=S0272884213012315&rfr_iscdi=true