Conventional- and microwave-hydrothermal synthesis of LiMn2O4: Effect of synthesis on electrochemical energy storage performances
The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize Li...
Gespeichert in:
Veröffentlicht in: | Ceramics international 2014-03, Vol.40 (2), p.3155-3163 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize LiMn2O4 electrode materials with reversible electrochemical reaction in a short reaction time and low reaction temperature than conventional-hydrothermal route. The capacitance of LiMn2O4 electrode increased with increasing crystallization time in conventional-hydrothermal route. The results showed that LiMn2O4 supercapacitors had similar discharge capacity and potential window (1.2V) as that of ordinary lithium-ion battery cathodes. In LiNO3 aqueous electrolyte, the reaction kinetics of LiMn2O4 supercapacitors was very fast. Even, at current densities of 1A/g and 5A/g, aqueous electrolyte gave good capacity compared with that in organic electrolyte at a current density of 0.05A/g. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2013.09.128 |