The accuracy and precision of the advanced Poisson dead-time correction and its importance for multivariate analysis of high mass resolution ToF-SIMS data

Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) data collected in single ion counting mode suffers from dead‐time effects that lead to potentially confusing artefacts when common multivariate analysis (MVA) methods are applied to the data. These artefacts can be eliminated by applying an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2014-09, Vol.46 (9), p.581-590
1. Verfasser: Tyler, Bonnie J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) data collected in single ion counting mode suffers from dead‐time effects that lead to potentially confusing artefacts when common multivariate analysis (MVA) methods are applied to the data. These artefacts can be eliminated by applying an advanced Poisson dead‐time correction that accounts for the signal intensity in the dead‐time window preceding each time channel. Because this correction is nonlinear, it changes the noise distribution in the data. In this work, the accuracy of this dead‐time correction and the noise characteristics of the corrected data have been analysed for spectra with small numbers of primary ion pulses. A simple but accurate equation for estimating the standard deviation in the advanced dead‐time corrected data has been developed. Based on these results, a scaling procedure to enable successful MVA of advanced dead‐time corrected ToF‐SIMS data has been developed. The improvements made possible by using the advanced dead‐time correction and our recommended scaling are presented for principal components analysis of a ToF‐SIMS image of aerosol particles on polytetrafluoroethylene. Recommendations are made for using the advanced dead time correction and scaling ToF‐SIMS data in order optimize the outcomes of MVA. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:0142-2421
1096-9918
DOI:10.1002/sia.5543