A Lead-Free and High-Energy Density Ceramic for Energy Storage Applications
In this work, we demonstrate a very high‐energy density and high‐temperature stability capacitor based on SrTiO3‐substituted BiFeO3 thin films. An energy density of 18.6 J/cm3 at 972 kV/cm is reported. The temperature coefficient of capacitance (TCC) was below 11% from room temperature up to 200°C....
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2013-09, Vol.96 (9), p.2699-2702 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we demonstrate a very high‐energy density and high‐temperature stability capacitor based on SrTiO3‐substituted BiFeO3 thin films. An energy density of 18.6 J/cm3 at 972 kV/cm is reported. The temperature coefficient of capacitance (TCC) was below 11% from room temperature up to 200°C. These results are of practical importance, because it puts forward a promising novel and environmentally friendly, lead‐free material, for high‐temperature applications in power electronics up to 200°C. Applications include capacitors for low carbon vehicles, renewable energy technologies, integrated circuits, and for the high‐temperature aerospace sector. |
---|---|
ISSN: | 0002-7820 1551-2916 |
DOI: | 10.1111/jace.12508 |