A Compactness Tool for the Analysis of Nonlocal Evolution Equations

In this paper we analyze the long time behavior of the solutions of a nonlocal diffusion-convection equation. We give a new compactness criterion in the Lebesgue spaces $L pi ((0,T)\times \Omega)$ and use it to obtain the first term in the asymptotic expansion of the solutions. Previous results of [...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2015-01, Vol.47 (2), p.1330-1354
Hauptverfasser: Ignat, Liviu I., Ignat, Tatiana I., Stancu-Dumitru, Denisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1354
container_issue 2
container_start_page 1330
container_title SIAM journal on mathematical analysis
container_volume 47
creator Ignat, Liviu I.
Ignat, Tatiana I.
Stancu-Dumitru, Denisa
description In this paper we analyze the long time behavior of the solutions of a nonlocal diffusion-convection equation. We give a new compactness criterion in the Lebesgue spaces $L pi ((0,T)\times \Omega)$ and use it to obtain the first term in the asymptotic expansion of the solutions. Previous results of [J. Bourgain, H. Brezis, and P. Mironescu, in Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001] are used to obtain a compactness result in the spirit of the Aubin--Lions--Simon lemma.
doi_str_mv 10.1137/130921349
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692344709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692344709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-4f76cf9361cb1c35a7c54d2d37d11584a52aec6f3b54a7d3880ceb8dd654d2483</originalsourceid><addsrcrecordid>eNo9kL1OwzAYRS0EEqUw8AYeYQj4i__isYrCj1TBUubIcWwR5MRtvgSpbw9REdO9w9EZDiG3wB4AuH4EzkwOXJgzsgJmZKZBinOyYoyrDASwS3KF-MUYKGHYipQbWqZ-b900eES6SynSkEY6fXq6GWw8Yoc0BfqWhpicjbT6TnGeujTQ6jDb5eA1uQg2or_52zX5eKp25Uu2fX9-LTfbzOUqnzIRtHLBcAWuAcel1U6KNm-5bgFkIazMrXcq8EYKq1teFMz5pmhbtWCi4Gtyd_Lux3SYPU5136HzMdrBpxlrUCbnQmhmftH7E-rGhDj6UO_HrrfjsQZWL6Hq_1D8B-heWXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692344709</pqid></control><display><type>article</type><title>A Compactness Tool for the Analysis of Nonlocal Evolution Equations</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Ignat, Liviu I. ; Ignat, Tatiana I. ; Stancu-Dumitru, Denisa</creator><creatorcontrib>Ignat, Liviu I. ; Ignat, Tatiana I. ; Stancu-Dumitru, Denisa</creatorcontrib><description>In this paper we analyze the long time behavior of the solutions of a nonlocal diffusion-convection equation. We give a new compactness criterion in the Lebesgue spaces $L pi ((0,T)\times \Omega)$ and use it to obtain the first term in the asymptotic expansion of the solutions. Previous results of [J. Bourgain, H. Brezis, and P. Mironescu, in Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001] are used to obtain a compactness result in the spirit of the Aubin--Lions--Simon lemma.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/130921349</identifier><language>eng</language><subject>Asymptotic expansions ; Criteria ; Diffusion ; Evolution ; Mathematical analysis ; Partial differential equations ; Presses</subject><ispartof>SIAM journal on mathematical analysis, 2015-01, Vol.47 (2), p.1330-1354</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-4f76cf9361cb1c35a7c54d2d37d11584a52aec6f3b54a7d3880ceb8dd654d2483</citedby><cites>FETCH-LOGICAL-c262t-4f76cf9361cb1c35a7c54d2d37d11584a52aec6f3b54a7d3880ceb8dd654d2483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,27903,27904</link.rule.ids></links><search><creatorcontrib>Ignat, Liviu I.</creatorcontrib><creatorcontrib>Ignat, Tatiana I.</creatorcontrib><creatorcontrib>Stancu-Dumitru, Denisa</creatorcontrib><title>A Compactness Tool for the Analysis of Nonlocal Evolution Equations</title><title>SIAM journal on mathematical analysis</title><description>In this paper we analyze the long time behavior of the solutions of a nonlocal diffusion-convection equation. We give a new compactness criterion in the Lebesgue spaces $L pi ((0,T)\times \Omega)$ and use it to obtain the first term in the asymptotic expansion of the solutions. Previous results of [J. Bourgain, H. Brezis, and P. Mironescu, in Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001] are used to obtain a compactness result in the spirit of the Aubin--Lions--Simon lemma.</description><subject>Asymptotic expansions</subject><subject>Criteria</subject><subject>Diffusion</subject><subject>Evolution</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Presses</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAYRS0EEqUw8AYeYQj4i__isYrCj1TBUubIcWwR5MRtvgSpbw9REdO9w9EZDiG3wB4AuH4EzkwOXJgzsgJmZKZBinOyYoyrDASwS3KF-MUYKGHYipQbWqZ-b900eES6SynSkEY6fXq6GWw8Yoc0BfqWhpicjbT6TnGeujTQ6jDb5eA1uQg2or_52zX5eKp25Uu2fX9-LTfbzOUqnzIRtHLBcAWuAcel1U6KNm-5bgFkIazMrXcq8EYKq1teFMz5pmhbtWCi4Gtyd_Lux3SYPU5136HzMdrBpxlrUCbnQmhmftH7E-rGhDj6UO_HrrfjsQZWL6Hq_1D8B-heWXU</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Ignat, Liviu I.</creator><creator>Ignat, Tatiana I.</creator><creator>Stancu-Dumitru, Denisa</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>A Compactness Tool for the Analysis of Nonlocal Evolution Equations</title><author>Ignat, Liviu I. ; Ignat, Tatiana I. ; Stancu-Dumitru, Denisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-4f76cf9361cb1c35a7c54d2d37d11584a52aec6f3b54a7d3880ceb8dd654d2483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymptotic expansions</topic><topic>Criteria</topic><topic>Diffusion</topic><topic>Evolution</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Presses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignat, Liviu I.</creatorcontrib><creatorcontrib>Ignat, Tatiana I.</creatorcontrib><creatorcontrib>Stancu-Dumitru, Denisa</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignat, Liviu I.</au><au>Ignat, Tatiana I.</au><au>Stancu-Dumitru, Denisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Compactness Tool for the Analysis of Nonlocal Evolution Equations</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2015-01</date><risdate>2015</risdate><volume>47</volume><issue>2</issue><spage>1330</spage><epage>1354</epage><pages>1330-1354</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>In this paper we analyze the long time behavior of the solutions of a nonlocal diffusion-convection equation. We give a new compactness criterion in the Lebesgue spaces $L pi ((0,T)\times \Omega)$ and use it to obtain the first term in the asymptotic expansion of the solutions. Previous results of [J. Bourgain, H. Brezis, and P. Mironescu, in Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001] are used to obtain a compactness result in the spirit of the Aubin--Lions--Simon lemma.</abstract><doi>10.1137/130921349</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 2015-01, Vol.47 (2), p.1330-1354
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_miscellaneous_1692344709
source LOCUS - SIAM's Online Journal Archive
subjects Asymptotic expansions
Criteria
Diffusion
Evolution
Mathematical analysis
Partial differential equations
Presses
title A Compactness Tool for the Analysis of Nonlocal Evolution Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Compactness%20Tool%20for%20the%20Analysis%20of%20Nonlocal%20Evolution%20Equations&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Ignat,%20Liviu%20I.&rft.date=2015-01&rft.volume=47&rft.issue=2&rft.spage=1330&rft.epage=1354&rft.pages=1330-1354&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/130921349&rft_dat=%3Cproquest_cross%3E1692344709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692344709&rft_id=info:pmid/&rfr_iscdi=true