A Compactness Tool for the Analysis of Nonlocal Evolution Equations
In this paper we analyze the long time behavior of the solutions of a nonlocal diffusion-convection equation. We give a new compactness criterion in the Lebesgue spaces $L pi ((0,T)\times \Omega)$ and use it to obtain the first term in the asymptotic expansion of the solutions. Previous results of [...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2015-01, Vol.47 (2), p.1330-1354 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we analyze the long time behavior of the solutions of a nonlocal diffusion-convection equation. We give a new compactness criterion in the Lebesgue spaces $L pi ((0,T)\times \Omega)$ and use it to obtain the first term in the asymptotic expansion of the solutions. Previous results of [J. Bourgain, H. Brezis, and P. Mironescu, in Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001] are used to obtain a compactness result in the spirit of the Aubin--Lions--Simon lemma. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/130921349 |