Facile Production of 5‑Hydroxymethyl-2-Furfural from Industrially Supplied Fructose Syrup Using a Wood Powder-Derived Carbon Catalyst in an Ethylene Glycol-Based Solvent

Petroleum-independent and economically viable production of 5-hydroxymethyl-2-furfural (HMF) from industrially supplied high fructose corn syrup (HFCS) using a wood powder-derived carbonaceous solid acid in an ethylene glycol (EG)-based solvent was developed. EG-based solvents were preferable to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2014-03, Vol.53 (12), p.4633-4641
Hauptverfasser: Kim, Bora, Antonyraj, Churchil A, Kim, Yong Jin, Kim, Baekjin, Shin, Seunghan, Kim, Sangyong, Lee, Kwan-Young, Cho, Jin Ku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Petroleum-independent and economically viable production of 5-hydroxymethyl-2-furfural (HMF) from industrially supplied high fructose corn syrup (HFCS) using a wood powder-derived carbonaceous solid acid in an ethylene glycol (EG)-based solvent was developed. EG-based solvents were preferable to the dehydration of HFCS into HMF owing to stabilizing reversible intermediates. In addition, low boiling EG-based solvents were readily removed to isolate HMF. As a parametric study on the dehydration of HFCS into HMF in an EG-based solvent, effects of reaction temperature, initial concentration of fructose, catalyst dosage, and water content on reaction rate and HMF yield were investigated. Sulfonated amorphous carbonaceous materials (∼0.7 mmol of SO3H/g) were prepared from wood powder via incomplete hydrothermal carbonization and then sulfonization, and they were applied to the dehydration of HFCS in glyme, affording HMF in 80% yield. It was also found that a prolonged reaction enabled further conversion of HMF into levulinic acid in a highly selective manner.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie500303e