Temperature Dependence of Electrical Resistivity (4-300 K) in Aluminum- and Boron-Doped SiC Ceramics

Al‐ and B‐doped 3C–SiC ceramics were prepared by hot‐pressing powder compacts containing submicrometer‐sized β‐SiC, precursors of 5 wt% nanosized β‐SiC, and an optional additive (Al or B) in an Ar atmosphere. Electron probe microanalysis (EPMA) investigation on the obtained specimens revealed that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2013-08, Vol.96 (8), p.2525-2530
Hauptverfasser: Kim, Kwang Joo, Lim, Kwang-Young, Kim, Young-Wook, Kim, Hyoung Chan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Al‐ and B‐doped 3C–SiC ceramics were prepared by hot‐pressing powder compacts containing submicrometer‐sized β‐SiC, precursors of 5 wt% nanosized β‐SiC, and an optional additive (Al or B) in an Ar atmosphere. Electron probe microanalysis (EPMA) investigation on the obtained specimens revealed that a portion of the doped Al and B atoms substituted the zinc blende lattice sites. The temperature‐dependent electrical resistivity data of the Al‐ and B‐doped SiC specimens were measured in the 4–300 K range and compared with those of an undoped specimen. The Al‐ and B‐doped SiC specimens exhibited resistivities that were as high as ~103 Ω cm at room temperature and ~105 and ~104 Ω cm, respectively, below 100 K. These values are larger than those of the undoped SiC specimen by a factor of ~104. Such high resistivities of the impurity‐doped specimens are attributable to the carrier compensation by the Al‐ and B‐derived acceptors located well above the valence‐band edge of 3C–SiC. Photoluminescence investigation revealed that the Al‐ and B‐doped specimens exhibited emission profile below 2 eV, implying the existence of the acceptors.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.12351