Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach
The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arse...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2011-09, Vol.50 (17), p.9852-9863 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9863 |
---|---|
container_issue | 17 |
container_start_page | 9852 |
container_title | Industrial & engineering chemistry research |
container_volume | 50 |
creator | Ranjan, D Mishra, D Hasan, S. H |
description | The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input–output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output. |
doi_str_mv | 10.1021/ie200612f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692322042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692322042</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-6a75d120d280e1b3ea73d7d7d14ddeda16a9d41c9ca98c4c18bb1fdc94db95043</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EEqVw4B_kggSHgO3YicMtVLykAhKPc7Txg7qkcbATIf49BqpyQXuYPXw7qxmEDgk-JZiSM6spxjmhZgtNCKc45ZjxbTTBQoiUC8F30V4IS4wx54xNkLqwDlRwvh-s6xJnksoH3Vl5nlRd3AdrrLTQJvd69D8yfDj_FhLoVPKoQ--6oJOn0RuQOrnTw8Ip17pXKyNc9b13IBf7aMdAG_TBWqfo5eryeXaTzh-ub2fVPIWM0iHNoeCKUKyowJo0mYYiU0UcwpTSCkgOpWJElhJKIZkkommIUbJkqiljzmyKjn9949v3UYehXtkgddtCp90YapKXNH7CjEb05BeV3oXgtal7b1fgP2uC6-8m602TkT1a20KIsYyHTtqwOaCMiSynxR8HMtRLN_ouhv3H7wsBWH_-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692322042</pqid></control><display><type>article</type><title>Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach</title><source>American Chemical Society Journals</source><creator>Ranjan, D ; Mishra, D ; Hasan, S. H</creator><creatorcontrib>Ranjan, D ; Mishra, D ; Hasan, S. H</creatorcontrib><description>The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input–output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie200612f</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Algorithms ; Applied Chemistry ; Applied sciences ; Arsenic ; Artificial neural networks ; Biological and medical sciences ; Biotechnology ; Chemical engineering ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Learning theory ; Mathematical analysis ; Matlab ; Methods. Procedures. Technologies ; Neural networks ; Optimization ; Others ; Various methods and equipments</subject><ispartof>Industrial & engineering chemistry research, 2011-09, Vol.50 (17), p.9852-9863</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-6a75d120d280e1b3ea73d7d7d14ddeda16a9d41c9ca98c4c18bb1fdc94db95043</citedby><cites>FETCH-LOGICAL-a322t-6a75d120d280e1b3ea73d7d7d14ddeda16a9d41c9ca98c4c18bb1fdc94db95043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie200612f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie200612f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24483627$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranjan, D</creatorcontrib><creatorcontrib>Mishra, D</creatorcontrib><creatorcontrib>Hasan, S. H</creatorcontrib><title>Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input–output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output.</description><subject>Algorithms</subject><subject>Applied Chemistry</subject><subject>Applied sciences</subject><subject>Arsenic</subject><subject>Artificial neural networks</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Learning theory</subject><subject>Mathematical analysis</subject><subject>Matlab</subject><subject>Methods. Procedures. Technologies</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Others</subject><subject>Various methods and equipments</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkEtPwzAQhC0EEqVw4B_kggSHgO3YicMtVLykAhKPc7Txg7qkcbATIf49BqpyQXuYPXw7qxmEDgk-JZiSM6spxjmhZgtNCKc45ZjxbTTBQoiUC8F30V4IS4wx54xNkLqwDlRwvh-s6xJnksoH3Vl5nlRd3AdrrLTQJvd69D8yfDj_FhLoVPKoQ--6oJOn0RuQOrnTw8Ip17pXKyNc9b13IBf7aMdAG_TBWqfo5eryeXaTzh-ub2fVPIWM0iHNoeCKUKyowJo0mYYiU0UcwpTSCkgOpWJElhJKIZkkommIUbJkqiljzmyKjn9949v3UYehXtkgddtCp90YapKXNH7CjEb05BeV3oXgtal7b1fgP2uC6-8m602TkT1a20KIsYyHTtqwOaCMiSynxR8HMtRLN_ouhv3H7wsBWH_-</recordid><startdate>20110907</startdate><enddate>20110907</enddate><creator>Ranjan, D</creator><creator>Mishra, D</creator><creator>Hasan, S. H</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110907</creationdate><title>Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach</title><author>Ranjan, D ; Mishra, D ; Hasan, S. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-6a75d120d280e1b3ea73d7d7d14ddeda16a9d41c9ca98c4c18bb1fdc94db95043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied Chemistry</topic><topic>Applied sciences</topic><topic>Arsenic</topic><topic>Artificial neural networks</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Learning theory</topic><topic>Mathematical analysis</topic><topic>Matlab</topic><topic>Methods. Procedures. Technologies</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Others</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjan, D</creatorcontrib><creatorcontrib>Mishra, D</creatorcontrib><creatorcontrib>Hasan, S. H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjan, D</au><au>Mishra, D</au><au>Hasan, S. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2011-09-07</date><risdate>2011</risdate><volume>50</volume><issue>17</issue><spage>9852</spage><epage>9863</epage><pages>9852-9863</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input–output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie200612f</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2011-09, Vol.50 (17), p.9852-9863 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692322042 |
source | American Chemical Society Journals |
subjects | Algorithms Applied Chemistry Applied sciences Arsenic Artificial neural networks Biological and medical sciences Biotechnology Chemical engineering Exact sciences and technology Fundamental and applied biological sciences. Psychology Learning theory Mathematical analysis Matlab Methods. Procedures. Technologies Neural networks Optimization Others Various methods and equipments |
title | Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioadsorption%20of%20Arsenic:%20An%20Artificial%20Neural%20Networks%20and%20Response%20Surface%20Methodological%20Approach&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Ranjan,%20D&rft.date=2011-09-07&rft.volume=50&rft.issue=17&rft.spage=9852&rft.epage=9863&rft.pages=9852-9863&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie200612f&rft_dat=%3Cproquest_cross%3E1692322042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692322042&rft_id=info:pmid/&rfr_iscdi=true |