Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach

The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2011-09, Vol.50 (17), p.9852-9863
Hauptverfasser: Ranjan, D, Mishra, D, Hasan, S. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9863
container_issue 17
container_start_page 9852
container_title Industrial & engineering chemistry research
container_volume 50
creator Ranjan, D
Mishra, D
Hasan, S. H
description The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input–output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output.
doi_str_mv 10.1021/ie200612f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692322042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692322042</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-6a75d120d280e1b3ea73d7d7d14ddeda16a9d41c9ca98c4c18bb1fdc94db95043</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EEqVw4B_kggSHgO3YicMtVLykAhKPc7Txg7qkcbATIf49BqpyQXuYPXw7qxmEDgk-JZiSM6spxjmhZgtNCKc45ZjxbTTBQoiUC8F30V4IS4wx54xNkLqwDlRwvh-s6xJnksoH3Vl5nlRd3AdrrLTQJvd69D8yfDj_FhLoVPKoQ--6oJOn0RuQOrnTw8Ip17pXKyNc9b13IBf7aMdAG_TBWqfo5eryeXaTzh-ub2fVPIWM0iHNoeCKUKyowJo0mYYiU0UcwpTSCkgOpWJElhJKIZkkommIUbJkqiljzmyKjn9949v3UYehXtkgddtCp90YapKXNH7CjEb05BeV3oXgtal7b1fgP2uC6-8m602TkT1a20KIsYyHTtqwOaCMiSynxR8HMtRLN_ouhv3H7wsBWH_-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692322042</pqid></control><display><type>article</type><title>Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach</title><source>American Chemical Society Journals</source><creator>Ranjan, D ; Mishra, D ; Hasan, S. H</creator><creatorcontrib>Ranjan, D ; Mishra, D ; Hasan, S. H</creatorcontrib><description>The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input–output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie200612f</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Algorithms ; Applied Chemistry ; Applied sciences ; Arsenic ; Artificial neural networks ; Biological and medical sciences ; Biotechnology ; Chemical engineering ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Learning theory ; Mathematical analysis ; Matlab ; Methods. Procedures. Technologies ; Neural networks ; Optimization ; Others ; Various methods and equipments</subject><ispartof>Industrial &amp; engineering chemistry research, 2011-09, Vol.50 (17), p.9852-9863</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-6a75d120d280e1b3ea73d7d7d14ddeda16a9d41c9ca98c4c18bb1fdc94db95043</citedby><cites>FETCH-LOGICAL-a322t-6a75d120d280e1b3ea73d7d7d14ddeda16a9d41c9ca98c4c18bb1fdc94db95043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie200612f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie200612f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24483627$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranjan, D</creatorcontrib><creatorcontrib>Mishra, D</creatorcontrib><creatorcontrib>Hasan, S. H</creatorcontrib><title>Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input–output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output.</description><subject>Algorithms</subject><subject>Applied Chemistry</subject><subject>Applied sciences</subject><subject>Arsenic</subject><subject>Artificial neural networks</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Learning theory</subject><subject>Mathematical analysis</subject><subject>Matlab</subject><subject>Methods. Procedures. Technologies</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Others</subject><subject>Various methods and equipments</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkEtPwzAQhC0EEqVw4B_kggSHgO3YicMtVLykAhKPc7Txg7qkcbATIf49BqpyQXuYPXw7qxmEDgk-JZiSM6spxjmhZgtNCKc45ZjxbTTBQoiUC8F30V4IS4wx54xNkLqwDlRwvh-s6xJnksoH3Vl5nlRd3AdrrLTQJvd69D8yfDj_FhLoVPKoQ--6oJOn0RuQOrnTw8Ip17pXKyNc9b13IBf7aMdAG_TBWqfo5eryeXaTzh-ub2fVPIWM0iHNoeCKUKyowJo0mYYiU0UcwpTSCkgOpWJElhJKIZkkommIUbJkqiljzmyKjn9949v3UYehXtkgddtCp90YapKXNH7CjEb05BeV3oXgtal7b1fgP2uC6-8m602TkT1a20KIsYyHTtqwOaCMiSynxR8HMtRLN_ouhv3H7wsBWH_-</recordid><startdate>20110907</startdate><enddate>20110907</enddate><creator>Ranjan, D</creator><creator>Mishra, D</creator><creator>Hasan, S. H</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110907</creationdate><title>Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach</title><author>Ranjan, D ; Mishra, D ; Hasan, S. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-6a75d120d280e1b3ea73d7d7d14ddeda16a9d41c9ca98c4c18bb1fdc94db95043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied Chemistry</topic><topic>Applied sciences</topic><topic>Arsenic</topic><topic>Artificial neural networks</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Learning theory</topic><topic>Mathematical analysis</topic><topic>Matlab</topic><topic>Methods. Procedures. Technologies</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Others</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjan, D</creatorcontrib><creatorcontrib>Mishra, D</creatorcontrib><creatorcontrib>Hasan, S. H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjan, D</au><au>Mishra, D</au><au>Hasan, S. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2011-09-07</date><risdate>2011</risdate><volume>50</volume><issue>17</issue><spage>9852</spage><epage>9863</epage><pages>9852-9863</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input–output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie200612f</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2011-09, Vol.50 (17), p.9852-9863
issn 0888-5885
1520-5045
language eng
recordid cdi_proquest_miscellaneous_1692322042
source American Chemical Society Journals
subjects Algorithms
Applied Chemistry
Applied sciences
Arsenic
Artificial neural networks
Biological and medical sciences
Biotechnology
Chemical engineering
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Learning theory
Mathematical analysis
Matlab
Methods. Procedures. Technologies
Neural networks
Optimization
Others
Various methods and equipments
title Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioadsorption%20of%20Arsenic:%20An%20Artificial%20Neural%20Networks%20and%20Response%20Surface%20Methodological%20Approach&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Ranjan,%20D&rft.date=2011-09-07&rft.volume=50&rft.issue=17&rft.spage=9852&rft.epage=9863&rft.pages=9852-9863&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie200612f&rft_dat=%3Cproquest_cross%3E1692322042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692322042&rft_id=info:pmid/&rfr_iscdi=true