Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach

The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2011-09, Vol.50 (17), p.9852-9863
Hauptverfasser: Ranjan, D, Mishra, D, Hasan, S. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input–output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie200612f