Highly efficient densification of carbon fiber-reinforced SiC-matrix composites by melting infiltration and pyrolysis using polycarbosilane

Carbon fiber-reinforced SiC-matrix composites (Cf/SiC) were fabricated via a precursor infiltration and pyrolysis (PIP) process. A polycarbosilane (PCS) precursor was used, with a halogen element (iodine) for curing. The effects of high-temperature polycarbosilane infiltrate melting and iodine-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ceramics international 2013-07, Vol.39 (5), p.5623-5629
Hauptverfasser: Bae, Jin-Chul, Cho, Kwang-Youn, Yoon, Dea-Ho, Baek, Seung-Soo, Park, Jong-Kyoo, Kim, Jung-Il, Im, Dong-Won, Riu, Doh-Hyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon fiber-reinforced SiC-matrix composites (Cf/SiC) were fabricated via a precursor infiltration and pyrolysis (PIP) process. A polycarbosilane (PCS) precursor was used, with a halogen element (iodine) for curing. The effects of high-temperature polycarbosilane infiltrate melting and iodine-based curing on the efficiency of the PIP process, as well as the physical characteristics of the fabricated Cf/SiC composites, were investigated. Highly dense Cf/SiC composites with strong fiber/matrix interfacial bonding were fabricated. By melting the infiltrate and using iodine-based preform curing, the ceramic yield of polycarbosilane increased drastically from 38wt% to 82wt%. This increase, which is due to pyrolysis, resulted in a low degree of shrinkage in the polycarbosilane-derived matrix. This shrinkage, in turn, increased the density of the Cf/SiC composites and improved the interfacial bonding between the matrix and fibers. As a result, the fabricated Cf/SiC composites exhibited a density of 1.75g/cm3. This was much higher than the 0.38g/cm3 density of bare carbon fiber preforms after 6 iterations of the PIP process.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2012.12.078