Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks
Azeotropic mixtures, an important class of technological fluids, constitute a challenge to theoretical modeling of their properties. The number of possible intermolecular interactions in multicomponent systems grows combinatorially as the number of components increases. Ab initio methods are barely...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2012-07, Vol.51 (26), p.9123-9128 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9128 |
---|---|
container_issue | 26 |
container_start_page | 9123 |
container_title | Industrial & engineering chemistry research |
container_volume | 51 |
creator | Oliferenko, Alexander A Oliferenko, Polina V Torrecilla, José S Katritzky, Alan R |
description | Azeotropic mixtures, an important class of technological fluids, constitute a challenge to theoretical modeling of their properties. The number of possible intermolecular interactions in multicomponent systems grows combinatorially as the number of components increases. Ab initio methods are barely applicable, because rather large clusters would need to be calculated, which is prohibitively time-consuming. The quantitative structure–property relationships (QSPR) method, which is efficient and extremely fast, could be a viable alternative approach, but the QSPR methodology requires adequate modification to provide a consistent treatment of multicomponent mixtures. We now report QSPR models for the prediction of normal boiling points of ternary azeotropic mixtures based on a training set of 78 published data points. A limited set of meticulously designed descriptors, together comprising the Universal Solvation Equation (J. Chem. Inf. Model. 2009, 49, 634), was used to provide input parameters for multiple regression and neural network models. The multiple regression model thus obtained is good for explanatory purposes, while the neural network model provides a better quality of fit, which is as high as 0.995 in terms of squared correlation coefficient. This model was also properly validated and analyzed in terms of parameter contributions and their nonlinearity characteristics. |
doi_str_mv | 10.1021/ie202550v |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692313696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692313696</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-7619a1edc8878843f899f640fe27d48af00f35745b2c6de819060a5a364641263</originalsourceid><addsrcrecordid>eNptkEFP3DAQha2qlVhoD_wDXyrBIXTs2I5zBLRQJKBIwDlyk3ExNfHicRbKr-8ui-ilp3nSfO8dPsZ2BRwIkOJbQAlSa1h-YDOhJVQalP7IZmCtrbS1eottE90DgNZKzdjLUQoxjL_4VQpjIZ48v8E8uvyHH75gKjktQs8vwnOZMhK_SANGHPhTKHe83CG_JVx3XuMYlpjJRX6d4tKVkEY-f5w2wY0Dv8Qpr76XWJ5S_k2f2SfvIuGXt7vDbk_mN8ffq_Mfp2fHh-eVq6UsVWNE6wQOvbWNtar2tm29UeBRNoOyzgP4WjdK_5S9GdCKFgw47WqjjBLS1Dtsb7O7yOlxQirdQ6AeY3Qjpok6YVpZi9q0a3R_g_Y5EWX03SKHh5WMTkC39tu9-12xX99mHfUu-uzGPtB7QRoBjTLtP8711N2naSU30n_2_gIPEIae</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692313696</pqid></control><display><type>article</type><title>Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks</title><source>American Chemical Society Journals</source><creator>Oliferenko, Alexander A ; Oliferenko, Polina V ; Torrecilla, José S ; Katritzky, Alan R</creator><creatorcontrib>Oliferenko, Alexander A ; Oliferenko, Polina V ; Torrecilla, José S ; Katritzky, Alan R</creatorcontrib><description>Azeotropic mixtures, an important class of technological fluids, constitute a challenge to theoretical modeling of their properties. The number of possible intermolecular interactions in multicomponent systems grows combinatorially as the number of components increases. Ab initio methods are barely applicable, because rather large clusters would need to be calculated, which is prohibitively time-consuming. The quantitative structure–property relationships (QSPR) method, which is efficient and extremely fast, could be a viable alternative approach, but the QSPR methodology requires adequate modification to provide a consistent treatment of multicomponent mixtures. We now report QSPR models for the prediction of normal boiling points of ternary azeotropic mixtures based on a training set of 78 published data points. A limited set of meticulously designed descriptors, together comprising the Universal Solvation Equation (J. Chem. Inf. Model. 2009, 49, 634), was used to provide input parameters for multiple regression and neural network models. The multiple regression model thus obtained is good for explanatory purposes, while the neural network model provides a better quality of fit, which is as high as 0.995 in terms of squared correlation coefficient. This model was also properly validated and analyzed in terms of parameter contributions and their nonlinearity characteristics.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie202550v</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Boiling points ; Chemical engineering ; Computational fluid dynamics ; Data points ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Neural networks ; Regression ; Solvation</subject><ispartof>Industrial & engineering chemistry research, 2012-07, Vol.51 (26), p.9123-9128</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-7619a1edc8878843f899f640fe27d48af00f35745b2c6de819060a5a364641263</citedby><cites>FETCH-LOGICAL-a322t-7619a1edc8878843f899f640fe27d48af00f35745b2c6de819060a5a364641263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie202550v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie202550v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26107469$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliferenko, Alexander A</creatorcontrib><creatorcontrib>Oliferenko, Polina V</creatorcontrib><creatorcontrib>Torrecilla, José S</creatorcontrib><creatorcontrib>Katritzky, Alan R</creatorcontrib><title>Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Azeotropic mixtures, an important class of technological fluids, constitute a challenge to theoretical modeling of their properties. The number of possible intermolecular interactions in multicomponent systems grows combinatorially as the number of components increases. Ab initio methods are barely applicable, because rather large clusters would need to be calculated, which is prohibitively time-consuming. The quantitative structure–property relationships (QSPR) method, which is efficient and extremely fast, could be a viable alternative approach, but the QSPR methodology requires adequate modification to provide a consistent treatment of multicomponent mixtures. We now report QSPR models for the prediction of normal boiling points of ternary azeotropic mixtures based on a training set of 78 published data points. A limited set of meticulously designed descriptors, together comprising the Universal Solvation Equation (J. Chem. Inf. Model. 2009, 49, 634), was used to provide input parameters for multiple regression and neural network models. The multiple regression model thus obtained is good for explanatory purposes, while the neural network model provides a better quality of fit, which is as high as 0.995 in terms of squared correlation coefficient. This model was also properly validated and analyzed in terms of parameter contributions and their nonlinearity characteristics.</description><subject>Applied sciences</subject><subject>Boiling points</subject><subject>Chemical engineering</subject><subject>Computational fluid dynamics</subject><subject>Data points</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Regression</subject><subject>Solvation</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkEFP3DAQha2qlVhoD_wDXyrBIXTs2I5zBLRQJKBIwDlyk3ExNfHicRbKr-8ui-ilp3nSfO8dPsZ2BRwIkOJbQAlSa1h-YDOhJVQalP7IZmCtrbS1eottE90DgNZKzdjLUQoxjL_4VQpjIZ48v8E8uvyHH75gKjktQs8vwnOZMhK_SANGHPhTKHe83CG_JVx3XuMYlpjJRX6d4tKVkEY-f5w2wY0Dv8Qpr76XWJ5S_k2f2SfvIuGXt7vDbk_mN8ffq_Mfp2fHh-eVq6UsVWNE6wQOvbWNtar2tm29UeBRNoOyzgP4WjdK_5S9GdCKFgw47WqjjBLS1Dtsb7O7yOlxQirdQ6AeY3Qjpok6YVpZi9q0a3R_g_Y5EWX03SKHh5WMTkC39tu9-12xX99mHfUu-uzGPtB7QRoBjTLtP8711N2naSU30n_2_gIPEIae</recordid><startdate>20120704</startdate><enddate>20120704</enddate><creator>Oliferenko, Alexander A</creator><creator>Oliferenko, Polina V</creator><creator>Torrecilla, José S</creator><creator>Katritzky, Alan R</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120704</creationdate><title>Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks</title><author>Oliferenko, Alexander A ; Oliferenko, Polina V ; Torrecilla, José S ; Katritzky, Alan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-7619a1edc8878843f899f640fe27d48af00f35745b2c6de819060a5a364641263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Boiling points</topic><topic>Chemical engineering</topic><topic>Computational fluid dynamics</topic><topic>Data points</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Regression</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliferenko, Alexander A</creatorcontrib><creatorcontrib>Oliferenko, Polina V</creatorcontrib><creatorcontrib>Torrecilla, José S</creatorcontrib><creatorcontrib>Katritzky, Alan R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliferenko, Alexander A</au><au>Oliferenko, Polina V</au><au>Torrecilla, José S</au><au>Katritzky, Alan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2012-07-04</date><risdate>2012</risdate><volume>51</volume><issue>26</issue><spage>9123</spage><epage>9128</epage><pages>9123-9128</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Azeotropic mixtures, an important class of technological fluids, constitute a challenge to theoretical modeling of their properties. The number of possible intermolecular interactions in multicomponent systems grows combinatorially as the number of components increases. Ab initio methods are barely applicable, because rather large clusters would need to be calculated, which is prohibitively time-consuming. The quantitative structure–property relationships (QSPR) method, which is efficient and extremely fast, could be a viable alternative approach, but the QSPR methodology requires adequate modification to provide a consistent treatment of multicomponent mixtures. We now report QSPR models for the prediction of normal boiling points of ternary azeotropic mixtures based on a training set of 78 published data points. A limited set of meticulously designed descriptors, together comprising the Universal Solvation Equation (J. Chem. Inf. Model. 2009, 49, 634), was used to provide input parameters for multiple regression and neural network models. The multiple regression model thus obtained is good for explanatory purposes, while the neural network model provides a better quality of fit, which is as high as 0.995 in terms of squared correlation coefficient. This model was also properly validated and analyzed in terms of parameter contributions and their nonlinearity characteristics.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie202550v</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2012-07, Vol.51 (26), p.9123-9128 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692313696 |
source | American Chemical Society Journals |
subjects | Applied sciences Boiling points Chemical engineering Computational fluid dynamics Data points Exact sciences and technology Mathematical analysis Mathematical models Neural networks Regression Solvation |
title | Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boiling%20Points%20of%20Ternary%20Azeotropic%20Mixtures%20Modeled%20with%20the%20Use%20of%20the%20Universal%20Solvation%20Equation%20and%20Neural%20Networks&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Oliferenko,%20Alexander%20A&rft.date=2012-07-04&rft.volume=51&rft.issue=26&rft.spage=9123&rft.epage=9128&rft.pages=9123-9128&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie202550v&rft_dat=%3Cproquest_cross%3E1692313696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692313696&rft_id=info:pmid/&rfr_iscdi=true |