Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks

Azeotropic mixtures, an important class of technological fluids, constitute a challenge to theoretical modeling of their properties. The number of possible intermolecular interactions in multicomponent systems grows combinatorially as the number of components increases. Ab initio methods are barely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2012-07, Vol.51 (26), p.9123-9128
Hauptverfasser: Oliferenko, Alexander A, Oliferenko, Polina V, Torrecilla, José S, Katritzky, Alan R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Azeotropic mixtures, an important class of technological fluids, constitute a challenge to theoretical modeling of their properties. The number of possible intermolecular interactions in multicomponent systems grows combinatorially as the number of components increases. Ab initio methods are barely applicable, because rather large clusters would need to be calculated, which is prohibitively time-consuming. The quantitative structure–property relationships (QSPR) method, which is efficient and extremely fast, could be a viable alternative approach, but the QSPR methodology requires adequate modification to provide a consistent treatment of multicomponent mixtures. We now report QSPR models for the prediction of normal boiling points of ternary azeotropic mixtures based on a training set of 78 published data points. A limited set of meticulously designed descriptors, together comprising the Universal Solvation Equation (J. Chem. Inf. Model. 2009, 49, 634), was used to provide input parameters for multiple regression and neural network models. The multiple regression model thus obtained is good for explanatory purposes, while the neural network model provides a better quality of fit, which is as high as 0.995 in terms of squared correlation coefficient. This model was also properly validated and analyzed in terms of parameter contributions and their nonlinearity characteristics.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie202550v