Low temperature synthesis of graphite on Ni films using inductively coupled plasma enhanced CVD
Controlled synthesis of graphite at low temperatures is a desirable process for a number of applications. Here, we present a study on the growth of thin graphite films on polycrystalline Ni films at low temperatures, about 380 °C, using inductively coupled plasma enhanced chemical vapor deposition....
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2015-01, Vol.3 (20), p.5192-5198 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Controlled synthesis of graphite at low temperatures is a desirable process for a number of applications. Here, we present a study on the growth of thin graphite films on polycrystalline Ni films at low temperatures, about 380 °C, using inductively coupled plasma enhanced chemical vapor deposition. Raman analysis shows that the grown graphite films are of good quality as determined by a low
I
D
/
I
G
ratio, ∼0.43, for thicknesses ranging from a few layers of graphene to several nanometer thick graphitic films. The growth of graphite films was also studied as a function of time, precursor gas pressure, hydrogen concentration, substrate temperature and plasma power. We found that graphitic films can be synthesized on polycrystalline thin Ni films on SiO
2
/Si substrates after only 10 seconds at a substrate temperature as low as 200 °C. The amount of hydrogen radicals, adjusted by changing the hydrogen to methane gas ratio and pressure, was found to dramatically affect the quality of graphite films due to their dual role as a catalyst and an etchant. We also find that a plasma power of about 50 W is preferred in order to minimize plasma induced graphite degradation. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/C5TC00635J |