Online Oxygen Kinetic Isotope Effects Using Membrane Inlet Mass Spectrometry Can Differentiate between Oxidases for Mechanistic Studies and Calculation of Their Contributions to Oxygen Consumption in Whole Tissues

The reduction chemistry of molecular oxygen underpins the energy metabolism of multicellular organisms, liberating free energy needed to catalyze a plethora of enzymatic reactions. Measuring the isotope signatures of 16O and 18O during O2 reduction can provide insights into both kinetic and equilibr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2014-05, Vol.86 (10), p.5171-5178
Hauptverfasser: Cheah, Mun Hon, Millar, A. Harvey, Myers, Ruth C, Day, David A, Roth, Justine, Hillier, Warwick, Badger, Murray R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reduction chemistry of molecular oxygen underpins the energy metabolism of multicellular organisms, liberating free energy needed to catalyze a plethora of enzymatic reactions. Measuring the isotope signatures of 16O and 18O during O2 reduction can provide insights into both kinetic and equilibrium isotope effects. However, current methods to measure O2 isotope signatures are time-consuming and disruptive. This paper describes the application of membrane inlet mass spectrometry to determine the oxygen isotope discrimination of a range of O2-consuming reactions, providing a rapid and convenient method for determining these values. A survey of oxygenase and oxidase reactions provides new insights into previously uncharacterized amino acid oxidase enzymes. Liquid and gas phase measurements show the ease of assays using this approach for purified enzymes, biological extracts and intact tissues.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac501086n