Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation
Enhanced biological phosphorus removal by anaerobic-aerobic operation is not always achieved successfully. In this study, microbial metabolism in the activated sludge of a failed enhanced biological phosphorus removal process was investigated to clarify the cause of the failure. The dominant microor...
Gespeichert in:
Veröffentlicht in: | Water science and technology 1994-01, Vol.30 (6), p.203-211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 6 |
container_start_page | 203 |
container_title | Water science and technology |
container_volume | 30 |
creator | Satoh, H Mino, T Matsuo, T |
description | Enhanced biological phosphorus removal by anaerobic-aerobic operation is not always achieved successfully. In this study, microbial metabolism in the activated sludge of a failed enhanced biological phosphorus removal process was investigated to clarify the cause of the failure. The dominant microorganisms in the sludge consumed carbohydrates in the uptake process of acetate or propionate under anaerobic conditions and accumulated polyhydroxyalkanaate. But significant release of phosphate was not observed because polyphosphate was not utilized. Consumed carbohydrates were found to have been converted to polyhydroxyalkanoate via propionyl-CoA in addition to acetyl-CoA, indicating that the microorganisms had enzymes to convert phosphoenolpyruvate or pyruvate produced in glycolysis to propionyl-CoA. The propionate fermentation was supposed to work as the sink of the reducing power excessively produced in glycolysis; thus while maintaining the redox balance, microorganisms were able to get energy not from polyphosphate but from glycogen. The difference in the metabolic systems between polyphosphate accumulating bacteria and the present microorganisms may give hints to avoid the deterioration of enhanced biological phosphorus removal. |
doi_str_mv | 10.2166/wst.1994.0270 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16922374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943165289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-fd2d1275cf93ffa75d41a048469dcfcf153d2833c25ccde427a3b93867f2cc5c3</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoWKtH7wHB29Z87WZzlPoJBS96Dmk2aVN2NzXJWnrxbzdtxYMXPQwzDL_3YOYBcInRhOCqutnENMFCsAkiHB2BUZ6rQnBKjsEor2iBCaGn4CzGFUKIU4ZG4PPOJBOcDyo530NvoemXqtemgXPnW79wWrVwvfQxVxgiDKbzH3k138K0NLDxnet_tJ3TwfuwUL2LXYQbl5Z-SHDt2-3BQiUDldZDN7R70Tk4saqN5uK7j8Hbw_3r9KmYvTw-T29nhWaEpMI2pMGEl9oKaq3iZcOwQqxmlWi01RaXtCE1pZqUWjeGEa7oXNC64pZoXWo6BtcH33Xw74OJSXYuatO2qjd-iBJXIv-Gs3-AnNUIk79BRnlZ7sGrX-DKD6HP10osGMVVSWqRqeJA5QfGGIyV6-A6FbYSI7lLV-Z05S5duUuXfgGEOpvV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943165289</pqid></control><display><type>article</type><title>Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Satoh, H ; Mino, T ; Matsuo, T</creator><contributor>Grabow, WOK ; Chin, KK ; Ohgaki, S ; Izod, EJ ; Ballay, D ; Bhamidimarri, R ; Milburn, A ; Dahlberg, AG ; Zotter, K ; Nagle, PT (eds) ; Asano, T</contributor><creatorcontrib>Satoh, H ; Mino, T ; Matsuo, T ; Grabow, WOK ; Chin, KK ; Ohgaki, S ; Izod, EJ ; Ballay, D ; Bhamidimarri, R ; Milburn, A ; Dahlberg, AG ; Zotter, K ; Nagle, PT (eds) ; Asano, T</creatorcontrib><description>Enhanced biological phosphorus removal by anaerobic-aerobic operation is not always achieved successfully. In this study, microbial metabolism in the activated sludge of a failed enhanced biological phosphorus removal process was investigated to clarify the cause of the failure. The dominant microorganisms in the sludge consumed carbohydrates in the uptake process of acetate or propionate under anaerobic conditions and accumulated polyhydroxyalkanaate. But significant release of phosphate was not observed because polyphosphate was not utilized. Consumed carbohydrates were found to have been converted to polyhydroxyalkanoate via propionyl-CoA in addition to acetyl-CoA, indicating that the microorganisms had enzymes to convert phosphoenolpyruvate or pyruvate produced in glycolysis to propionyl-CoA. The propionate fermentation was supposed to work as the sink of the reducing power excessively produced in glycolysis; thus while maintaining the redox balance, microorganisms were able to get energy not from polyphosphate but from glycogen. The difference in the metabolic systems between polyphosphate accumulating bacteria and the present microorganisms may give hints to avoid the deterioration of enhanced biological phosphorus removal.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.1994.0270</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Accumulation ; Acetates ; Acetic acid ; Activated sludge ; Aerobic microorganisms ; Anaerobic conditions ; Anaerobic microorganisms ; Anaerobic processes ; Anoxic conditions ; Bacteria ; Bioaccumulation ; Biological activity ; Carbohydrates ; Deterioration ; Fermentation ; Glycogen ; Glycolysis ; Metabolism ; Microorganisms ; Oxidoreductions ; Phosphates ; Phosphorus ; Phosphorus removal ; Polyhydroxyalkanoates ; Polyhydroxyalkanoic acid ; Propionic acid ; Pyruvic acid ; Removal ; Sludge ; Uptake</subject><ispartof>Water science and technology, 1994-01, Vol.30 (6), p.203-211</ispartof><rights>Copyright IWA Publishing Sep 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-fd2d1275cf93ffa75d41a048469dcfcf153d2833c25ccde427a3b93867f2cc5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Grabow, WOK</contributor><contributor>Chin, KK</contributor><contributor>Ohgaki, S</contributor><contributor>Izod, EJ</contributor><contributor>Ballay, D</contributor><contributor>Bhamidimarri, R</contributor><contributor>Milburn, A</contributor><contributor>Dahlberg, AG</contributor><contributor>Zotter, K</contributor><contributor>Nagle, PT (eds)</contributor><contributor>Asano, T</contributor><creatorcontrib>Satoh, H</creatorcontrib><creatorcontrib>Mino, T</creatorcontrib><creatorcontrib>Matsuo, T</creatorcontrib><title>Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation</title><title>Water science and technology</title><description>Enhanced biological phosphorus removal by anaerobic-aerobic operation is not always achieved successfully. In this study, microbial metabolism in the activated sludge of a failed enhanced biological phosphorus removal process was investigated to clarify the cause of the failure. The dominant microorganisms in the sludge consumed carbohydrates in the uptake process of acetate or propionate under anaerobic conditions and accumulated polyhydroxyalkanaate. But significant release of phosphate was not observed because polyphosphate was not utilized. Consumed carbohydrates were found to have been converted to polyhydroxyalkanoate via propionyl-CoA in addition to acetyl-CoA, indicating that the microorganisms had enzymes to convert phosphoenolpyruvate or pyruvate produced in glycolysis to propionyl-CoA. The propionate fermentation was supposed to work as the sink of the reducing power excessively produced in glycolysis; thus while maintaining the redox balance, microorganisms were able to get energy not from polyphosphate but from glycogen. The difference in the metabolic systems between polyphosphate accumulating bacteria and the present microorganisms may give hints to avoid the deterioration of enhanced biological phosphorus removal.</description><subject>Accumulation</subject><subject>Acetates</subject><subject>Acetic acid</subject><subject>Activated sludge</subject><subject>Aerobic microorganisms</subject><subject>Anaerobic conditions</subject><subject>Anaerobic microorganisms</subject><subject>Anaerobic processes</subject><subject>Anoxic conditions</subject><subject>Bacteria</subject><subject>Bioaccumulation</subject><subject>Biological activity</subject><subject>Carbohydrates</subject><subject>Deterioration</subject><subject>Fermentation</subject><subject>Glycogen</subject><subject>Glycolysis</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>Oxidoreductions</subject><subject>Phosphates</subject><subject>Phosphorus</subject><subject>Phosphorus removal</subject><subject>Polyhydroxyalkanoates</subject><subject>Polyhydroxyalkanoic acid</subject><subject>Propionic acid</subject><subject>Pyruvic acid</subject><subject>Removal</subject><subject>Sludge</subject><subject>Uptake</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkc1LAzEQxYMoWKtH7wHB29Z87WZzlPoJBS96Dmk2aVN2NzXJWnrxbzdtxYMXPQwzDL_3YOYBcInRhOCqutnENMFCsAkiHB2BUZ6rQnBKjsEor2iBCaGn4CzGFUKIU4ZG4PPOJBOcDyo530NvoemXqtemgXPnW79wWrVwvfQxVxgiDKbzH3k138K0NLDxnet_tJ3TwfuwUL2LXYQbl5Z-SHDt2-3BQiUDldZDN7R70Tk4saqN5uK7j8Hbw_3r9KmYvTw-T29nhWaEpMI2pMGEl9oKaq3iZcOwQqxmlWi01RaXtCE1pZqUWjeGEa7oXNC64pZoXWo6BtcH33Xw74OJSXYuatO2qjd-iBJXIv-Gs3-AnNUIk79BRnlZ7sGrX-DKD6HP10osGMVVSWqRqeJA5QfGGIyV6-A6FbYSI7lLV-Z05S5duUuXfgGEOpvV</recordid><startdate>19940101</startdate><enddate>19940101</enddate><creator>Satoh, H</creator><creator>Mino, T</creator><creator>Matsuo, T</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7ST</scope><scope>SOI</scope><scope>7T7</scope><scope>7TV</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QO</scope></search><sort><creationdate>19940101</creationdate><title>Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation</title><author>Satoh, H ; Mino, T ; Matsuo, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-fd2d1275cf93ffa75d41a048469dcfcf153d2833c25ccde427a3b93867f2cc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Accumulation</topic><topic>Acetates</topic><topic>Acetic acid</topic><topic>Activated sludge</topic><topic>Aerobic microorganisms</topic><topic>Anaerobic conditions</topic><topic>Anaerobic microorganisms</topic><topic>Anaerobic processes</topic><topic>Anoxic conditions</topic><topic>Bacteria</topic><topic>Bioaccumulation</topic><topic>Biological activity</topic><topic>Carbohydrates</topic><topic>Deterioration</topic><topic>Fermentation</topic><topic>Glycogen</topic><topic>Glycolysis</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>Oxidoreductions</topic><topic>Phosphates</topic><topic>Phosphorus</topic><topic>Phosphorus removal</topic><topic>Polyhydroxyalkanoates</topic><topic>Polyhydroxyalkanoic acid</topic><topic>Propionic acid</topic><topic>Pyruvic acid</topic><topic>Removal</topic><topic>Sludge</topic><topic>Uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satoh, H</creatorcontrib><creatorcontrib>Mino, T</creatorcontrib><creatorcontrib>Matsuo, T</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satoh, H</au><au>Mino, T</au><au>Matsuo, T</au><au>Grabow, WOK</au><au>Chin, KK</au><au>Ohgaki, S</au><au>Izod, EJ</au><au>Ballay, D</au><au>Bhamidimarri, R</au><au>Milburn, A</au><au>Dahlberg, AG</au><au>Zotter, K</au><au>Nagle, PT (eds)</au><au>Asano, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation</atitle><jtitle>Water science and technology</jtitle><date>1994-01-01</date><risdate>1994</risdate><volume>30</volume><issue>6</issue><spage>203</spage><epage>211</epage><pages>203-211</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>Enhanced biological phosphorus removal by anaerobic-aerobic operation is not always achieved successfully. In this study, microbial metabolism in the activated sludge of a failed enhanced biological phosphorus removal process was investigated to clarify the cause of the failure. The dominant microorganisms in the sludge consumed carbohydrates in the uptake process of acetate or propionate under anaerobic conditions and accumulated polyhydroxyalkanaate. But significant release of phosphate was not observed because polyphosphate was not utilized. Consumed carbohydrates were found to have been converted to polyhydroxyalkanoate via propionyl-CoA in addition to acetyl-CoA, indicating that the microorganisms had enzymes to convert phosphoenolpyruvate or pyruvate produced in glycolysis to propionyl-CoA. The propionate fermentation was supposed to work as the sink of the reducing power excessively produced in glycolysis; thus while maintaining the redox balance, microorganisms were able to get energy not from polyphosphate but from glycogen. The difference in the metabolic systems between polyphosphate accumulating bacteria and the present microorganisms may give hints to avoid the deterioration of enhanced biological phosphorus removal.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/wst.1994.0270</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 1994-01, Vol.30 (6), p.203-211 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_16922374 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accumulation Acetates Acetic acid Activated sludge Aerobic microorganisms Anaerobic conditions Anaerobic microorganisms Anaerobic processes Anoxic conditions Bacteria Bioaccumulation Biological activity Carbohydrates Deterioration Fermentation Glycogen Glycolysis Metabolism Microorganisms Oxidoreductions Phosphates Phosphorus Phosphorus removal Polyhydroxyalkanoates Polyhydroxyalkanoic acid Propionic acid Pyruvic acid Removal Sludge Uptake |
title | Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T13%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterioration%20of%20enhanced%20biological%20phosphorus%20removal%20by%20the%20domination%20of%20microorganisms%20without%20polyphosphate%20accumulation&rft.jtitle=Water%20science%20and%20technology&rft.au=Satoh,%20H&rft.date=1994-01-01&rft.volume=30&rft.issue=6&rft.spage=203&rft.epage=211&rft.pages=203-211&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.1994.0270&rft_dat=%3Cproquest_cross%3E1943165289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943165289&rft_id=info:pmid/&rfr_iscdi=true |