Regularized Machine Learning in the Genetic Prediction of Complex Traits: e1004754

[...]we discuss some key future advances, open questions and challenges in this developing field, when moving toward low-frequency variants and cross-phenotype interactions. Multivariate modeling approaches have already been shown to provide improved insights into genetic mechanisms and the interact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2014-11, Vol.10 (11)
Hauptverfasser: Okser, Sebastian, Pahikkala, Tapio, Airola, Antti, Salakoski, Tapio, Ripatti, Samuli, Aittokallio, Tero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[...]we discuss some key future advances, open questions and challenges in this developing field, when moving toward low-frequency variants and cross-phenotype interactions. Multivariate modeling approaches have already been shown to provide improved insights into genetic mechanisms and the interaction networks behind many complex traits, including atherosclerosis, coronary heart disease, and lipid levels, which would have gone undetected using the standard univariate modeling [2], [19]-[22].
ISSN:1553-7390
1553-7404
DOI:10.1371/journal.pgen.1004754