Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects

A discrete Boltzmann model (DBM) is developed to investigate the hydrodynamic and thermodynamic non-equilibrium (TNE) effects in phase separation processes. The interparticle force drives changes and the gradient force, induced by gradients of macroscopic quantities, opposes them. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2015-07, Vol.11 (26), p.5336-5345
Hauptverfasser: Gan, Yanbiao, Xu, Aiguo, Zhang, Guangcai, Succi, Sauro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A discrete Boltzmann model (DBM) is developed to investigate the hydrodynamic and thermodynamic non-equilibrium (TNE) effects in phase separation processes. The interparticle force drives changes and the gradient force, induced by gradients of macroscopic quantities, opposes them. In this paper, we investigate the interplay between them by providing a detailed inspection of various non-equilibrium observables. Based on the TNE features, we define TNE strength which roughly estimates the deviation amplitude from the thermodynamic equilibrium. The time evolution of the TNE intensity provides a convenient and efficient physical criterion to discriminate the stages of the spinodal decomposition and domain growth. Via the DBM simulation and this criterion, we quantitatively study the effects of latent heat and surface tension on phase separation. It is found that the TNE strength attains its maximum at the end of the spinodal decomposition stage, and it decreases when the latent heat increases from zero. The surface tension effects are threefold, prolong the duration of the spinodal decomposition stage, decrease the maximum TNE intensity, and accelerate the speed of the domain growth stage. Time evolution of the thermodynamic non-equilibrium intensity provides a physical criterion to discriminate the spinodal decomposition and domain growth stages.
ISSN:1744-683X
1744-6848
DOI:10.1039/c5sm01125f