A Bayesian perspective on magnitude estimation

Highlights • A generic Bayesian framework explains regression, range, and sequential effects. • Weber-Fechner law and Stevens’ power law can be linked via Bayes’ Rule. • Stevens’ power law exponent can be reinterpreted as weighting of prior knowledge. • We link Bayesian explanations of magnitude est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in cognitive sciences 2015-05, Vol.19 (5), p.285-293
Hauptverfasser: Petzschner, Frederike H, Glasauer, Stefan, Stephan, Klaas E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 293
container_issue 5
container_start_page 285
container_title Trends in cognitive sciences
container_volume 19
creator Petzschner, Frederike H
Glasauer, Stefan
Stephan, Klaas E
description Highlights • A generic Bayesian framework explains regression, range, and sequential effects. • Weber-Fechner law and Stevens’ power law can be linked via Bayes’ Rule. • Stevens’ power law exponent can be reinterpreted as weighting of prior knowledge. • We link Bayesian explanations of magnitude estimation to theories of schizophrenia.
doi_str_mv 10.1016/j.tics.2015.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1691280863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364661315000509</els_id><sourcerecordid>1691280863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-b11d479be53c32cc81c128c8fe9297009b90edcf96267b955601492bb16d161d3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMofv8BD9Kjl9aZpEkbEEEXv0DwoIK30KazkrXbrkkr-O9NWfXgwVNyeN43mWcYO0LIEFCdLrLB2ZBxQJmByAD4BtvFstCpgOJlM96FylOlUOywvRAWEMGiUNtsh8syFzIXuyy7SC6rTwqu6pIV-bAiO7gPSvouWVavnRvGhhIKg1tWg-u7A7Y1r9pAh9_nPnu-vnqa3ab3Dzd3s4v71Mq8GNIasckLXZMUVnBrS7TIS1vOSXNdAOhaAzV2rhVXRa2lVIC55nWNqkGFjdhnJ-vele_fx_i-WbpgqW2rjvoxGFQ6FkKpRET5GrW-D8HT3Kx8_K3_NAhm8mQWZvJkJk8GhImeYuj4u3-sl9T8Rn7EROBsDVCc8sORN8E66iw1zkdFpund__3nf-K2dZ2zVftG0faiH30X_Rk0gRswj9OmpkWhBAAJWnwBBJ-Mew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691280863</pqid></control><display><type>article</type><title>A Bayesian perspective on magnitude estimation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Petzschner, Frederike H ; Glasauer, Stefan ; Stephan, Klaas E</creator><creatorcontrib>Petzschner, Frederike H ; Glasauer, Stefan ; Stephan, Klaas E</creatorcontrib><description>Highlights • A generic Bayesian framework explains regression, range, and sequential effects. • Weber-Fechner law and Stevens’ power law can be linked via Bayes’ Rule. • Stevens’ power law exponent can be reinterpreted as weighting of prior knowledge. • We link Bayesian explanations of magnitude estimation to theories of schizophrenia.</description><identifier>ISSN: 1364-6613</identifier><identifier>EISSN: 1879-307X</identifier><identifier>DOI: 10.1016/j.tics.2015.03.002</identifier><identifier>PMID: 25843543</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bayes Theorem ; Brain - physiology ; generative model ; History, 19th Century ; Humans ; Judgment - physiology ; Neuroimaging ; Neurology ; Perception - physiology ; perceptual inference ; Psychiatry ; psychophysics ; Psychophysics - history ; Regression (Psychology) ; schizophrenia ; Stevens’ power law ; Weber-Fechner law</subject><ispartof>Trends in cognitive sciences, 2015-05, Vol.19 (5), p.285-293</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-b11d479be53c32cc81c128c8fe9297009b90edcf96267b955601492bb16d161d3</citedby><cites>FETCH-LOGICAL-c547t-b11d479be53c32cc81c128c8fe9297009b90edcf96267b955601492bb16d161d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tics.2015.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25843543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petzschner, Frederike H</creatorcontrib><creatorcontrib>Glasauer, Stefan</creatorcontrib><creatorcontrib>Stephan, Klaas E</creatorcontrib><title>A Bayesian perspective on magnitude estimation</title><title>Trends in cognitive sciences</title><addtitle>Trends Cogn Sci</addtitle><description>Highlights • A generic Bayesian framework explains regression, range, and sequential effects. • Weber-Fechner law and Stevens’ power law can be linked via Bayes’ Rule. • Stevens’ power law exponent can be reinterpreted as weighting of prior knowledge. • We link Bayesian explanations of magnitude estimation to theories of schizophrenia.</description><subject>Bayes Theorem</subject><subject>Brain - physiology</subject><subject>generative model</subject><subject>History, 19th Century</subject><subject>Humans</subject><subject>Judgment - physiology</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Perception - physiology</subject><subject>perceptual inference</subject><subject>Psychiatry</subject><subject>psychophysics</subject><subject>Psychophysics - history</subject><subject>Regression (Psychology)</subject><subject>schizophrenia</subject><subject>Stevens’ power law</subject><subject>Weber-Fechner law</subject><issn>1364-6613</issn><issn>1879-307X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1LxDAQhoMofv8BD9Kjl9aZpEkbEEEXv0DwoIK30KazkrXbrkkr-O9NWfXgwVNyeN43mWcYO0LIEFCdLrLB2ZBxQJmByAD4BtvFstCpgOJlM96FylOlUOywvRAWEMGiUNtsh8syFzIXuyy7SC6rTwqu6pIV-bAiO7gPSvouWVavnRvGhhIKg1tWg-u7A7Y1r9pAh9_nPnu-vnqa3ab3Dzd3s4v71Mq8GNIasckLXZMUVnBrS7TIS1vOSXNdAOhaAzV2rhVXRa2lVIC55nWNqkGFjdhnJ-vele_fx_i-WbpgqW2rjvoxGFQ6FkKpRET5GrW-D8HT3Kx8_K3_NAhm8mQWZvJkJk8GhImeYuj4u3-sl9T8Rn7EROBsDVCc8sORN8E66iw1zkdFpund__3nf-K2dZ2zVftG0faiH30X_Rk0gRswj9OmpkWhBAAJWnwBBJ-Mew</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Petzschner, Frederike H</creator><creator>Glasauer, Stefan</creator><creator>Stephan, Klaas E</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150501</creationdate><title>A Bayesian perspective on magnitude estimation</title><author>Petzschner, Frederike H ; Glasauer, Stefan ; Stephan, Klaas E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-b11d479be53c32cc81c128c8fe9297009b90edcf96267b955601492bb16d161d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayes Theorem</topic><topic>Brain - physiology</topic><topic>generative model</topic><topic>History, 19th Century</topic><topic>Humans</topic><topic>Judgment - physiology</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Perception - physiology</topic><topic>perceptual inference</topic><topic>Psychiatry</topic><topic>psychophysics</topic><topic>Psychophysics - history</topic><topic>Regression (Psychology)</topic><topic>schizophrenia</topic><topic>Stevens’ power law</topic><topic>Weber-Fechner law</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petzschner, Frederike H</creatorcontrib><creatorcontrib>Glasauer, Stefan</creatorcontrib><creatorcontrib>Stephan, Klaas E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in cognitive sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petzschner, Frederike H</au><au>Glasauer, Stefan</au><au>Stephan, Klaas E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian perspective on magnitude estimation</atitle><jtitle>Trends in cognitive sciences</jtitle><addtitle>Trends Cogn Sci</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>19</volume><issue>5</issue><spage>285</spage><epage>293</epage><pages>285-293</pages><issn>1364-6613</issn><eissn>1879-307X</eissn><abstract>Highlights • A generic Bayesian framework explains regression, range, and sequential effects. • Weber-Fechner law and Stevens’ power law can be linked via Bayes’ Rule. • Stevens’ power law exponent can be reinterpreted as weighting of prior knowledge. • We link Bayesian explanations of magnitude estimation to theories of schizophrenia.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25843543</pmid><doi>10.1016/j.tics.2015.03.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-6613
ispartof Trends in cognitive sciences, 2015-05, Vol.19 (5), p.285-293
issn 1364-6613
1879-307X
language eng
recordid cdi_proquest_miscellaneous_1691280863
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Bayes Theorem
Brain - physiology
generative model
History, 19th Century
Humans
Judgment - physiology
Neuroimaging
Neurology
Perception - physiology
perceptual inference
Psychiatry
psychophysics
Psychophysics - history
Regression (Psychology)
schizophrenia
Stevens’ power law
Weber-Fechner law
title A Bayesian perspective on magnitude estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20perspective%20on%20magnitude%20estimation&rft.jtitle=Trends%20in%20cognitive%20sciences&rft.au=Petzschner,%20Frederike%20H&rft.date=2015-05-01&rft.volume=19&rft.issue=5&rft.spage=285&rft.epage=293&rft.pages=285-293&rft.issn=1364-6613&rft.eissn=1879-307X&rft_id=info:doi/10.1016/j.tics.2015.03.002&rft_dat=%3Cproquest_cross%3E1691280863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691280863&rft_id=info:pmid/25843543&rft_els_id=S1364661315000509&rfr_iscdi=true