A Bayesian perspective on magnitude estimation
Highlights • A generic Bayesian framework explains regression, range, and sequential effects. • Weber-Fechner law and Stevens’ power law can be linked via Bayes’ Rule. • Stevens’ power law exponent can be reinterpreted as weighting of prior knowledge. • We link Bayesian explanations of magnitude est...
Gespeichert in:
Veröffentlicht in: | Trends in cognitive sciences 2015-05, Vol.19 (5), p.285-293 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights • A generic Bayesian framework explains regression, range, and sequential effects. • Weber-Fechner law and Stevens’ power law can be linked via Bayes’ Rule. • Stevens’ power law exponent can be reinterpreted as weighting of prior knowledge. • We link Bayesian explanations of magnitude estimation to theories of schizophrenia. |
---|---|
ISSN: | 1364-6613 1879-307X |
DOI: | 10.1016/j.tics.2015.03.002 |