Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes

Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-06, Vol.9 (6), p.6610-6618
Hauptverfasser: Wu, Chao, Kopold, Peter, Ding, Yuan-Li, van Aken, Peter A, Maier, Joachim, Yu, Yan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6618
container_issue 6
container_start_page 6610
container_title ACS nano
container_volume 9
creator Wu, Chao
Kopold, Peter
Ding, Yuan-Li
van Aken, Peter A
Maier, Joachim
Yu, Yan
description Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to the electrodes for sodium-storage, including low reversible capacity and low ion transport, as well as large volume change. To mitigate or even overcome the kinetic problems, we develop a self-assembly route to a novel architecture consisting of nanosized porous NASICON-type NaTi2(PO4)3 particles embedded in microsized 3D graphene network. Such architecture synergistically combines the advantages of a 3D graphene network and of 0D porous nanoparticles. It greatly increases the electron/ion transport kinetics and assures the electrode structure integrity, leading to attractive electrochemical performance as reflected by a high rate-capability (112 mAh g–1 at 1C, 105 mAh g–1 at 5C, 96 mAh g–1 at 10C, 67 mAh g–1 at 50C), a long cycle-life (capacity retention of 80% after 1000 cycles at 10C), and a high initial Coulombic efficiency (>79%). This nanostructure design provides a promising pathway for developing high performance NASICON-type materials for sodium storage.
doi_str_mv 10.1021/acsnano.5b02787
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1691015163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1691015163</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-51e17ed3c414510faf2463258c030d72508d677594e623d193a9c5b7471321693</originalsourceid><addsrcrecordid>eNo9kUFPGzEQha2qVYG0594qH6nQgsdee7PHKoSAFBFUqNSb5axniemuHexdVeHIL8eIlNO8wzdP8-YR8g3YKTAOZ6ZJ3vhwKteMV9PqAzmEWqiCTdWfj-9awgE5SumBMZkZ9ZkccMWkgLo8JM-3Oz9sMLkn5-_pTYhhTPTa3Dl-fLMqf4isfdiaOLimw0Tn_RqtRUudp-KcLqLZbtAjvcbhX4h_E21DpJfuflP8MgNS4y1dhmw82-X1YulapLfBurGn8w6bIQaL6Qv51Jou4df9nJDfF_O72WWxXC2uZj-XhREghkICQoVWNCWUElhrWl4qweW0YYLZiks2taqqZF2i4sLm7KZu5LoqKxAcVC0m5PjNdxvD44hp0L1LDXad8ZhT68wAAwlKZPT7Hh3XPVq9ja43caf__y0DJ29ALkA_hDH6fLkGpl9b0ftW9L4V8QLBL3zL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691015163</pqid></control><display><type>article</type><title>Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes</title><source>ACS Publications</source><creator>Wu, Chao ; Kopold, Peter ; Ding, Yuan-Li ; van Aken, Peter A ; Maier, Joachim ; Yu, Yan</creator><creatorcontrib>Wu, Chao ; Kopold, Peter ; Ding, Yuan-Li ; van Aken, Peter A ; Maier, Joachim ; Yu, Yan</creatorcontrib><description>Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to the electrodes for sodium-storage, including low reversible capacity and low ion transport, as well as large volume change. To mitigate or even overcome the kinetic problems, we develop a self-assembly route to a novel architecture consisting of nanosized porous NASICON-type NaTi2(PO4)3 particles embedded in microsized 3D graphene network. Such architecture synergistically combines the advantages of a 3D graphene network and of 0D porous nanoparticles. It greatly increases the electron/ion transport kinetics and assures the electrode structure integrity, leading to attractive electrochemical performance as reflected by a high rate-capability (112 mAh g–1 at 1C, 105 mAh g–1 at 5C, 96 mAh g–1 at 10C, 67 mAh g–1 at 50C), a long cycle-life (capacity retention of 80% after 1000 cycles at 10C), and a high initial Coulombic efficiency (&gt;79%). This nanostructure design provides a promising pathway for developing high performance NASICON-type materials for sodium storage.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b02787</identifier><identifier>PMID: 26053194</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2015-06, Vol.9 (6), p.6610-6618</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.5b02787$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.5b02787$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26053194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Kopold, Peter</creatorcontrib><creatorcontrib>Ding, Yuan-Li</creatorcontrib><creatorcontrib>van Aken, Peter A</creatorcontrib><creatorcontrib>Maier, Joachim</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><title>Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to the electrodes for sodium-storage, including low reversible capacity and low ion transport, as well as large volume change. To mitigate or even overcome the kinetic problems, we develop a self-assembly route to a novel architecture consisting of nanosized porous NASICON-type NaTi2(PO4)3 particles embedded in microsized 3D graphene network. Such architecture synergistically combines the advantages of a 3D graphene network and of 0D porous nanoparticles. It greatly increases the electron/ion transport kinetics and assures the electrode structure integrity, leading to attractive electrochemical performance as reflected by a high rate-capability (112 mAh g–1 at 1C, 105 mAh g–1 at 5C, 96 mAh g–1 at 10C, 67 mAh g–1 at 50C), a long cycle-life (capacity retention of 80% after 1000 cycles at 10C), and a high initial Coulombic efficiency (&gt;79%). This nanostructure design provides a promising pathway for developing high performance NASICON-type materials for sodium storage.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kUFPGzEQha2qVYG0594qH6nQgsdee7PHKoSAFBFUqNSb5axniemuHexdVeHIL8eIlNO8wzdP8-YR8g3YKTAOZ6ZJ3vhwKteMV9PqAzmEWqiCTdWfj-9awgE5SumBMZkZ9ZkccMWkgLo8JM-3Oz9sMLkn5-_pTYhhTPTa3Dl-fLMqf4isfdiaOLimw0Tn_RqtRUudp-KcLqLZbtAjvcbhX4h_E21DpJfuflP8MgNS4y1dhmw82-X1YulapLfBurGn8w6bIQaL6Qv51Jou4df9nJDfF_O72WWxXC2uZj-XhREghkICQoVWNCWUElhrWl4qweW0YYLZiks2taqqZF2i4sLm7KZu5LoqKxAcVC0m5PjNdxvD44hp0L1LDXad8ZhT68wAAwlKZPT7Hh3XPVq9ja43caf__y0DJ29ALkA_hDH6fLkGpl9b0ftW9L4V8QLBL3zL</recordid><startdate>20150623</startdate><enddate>20150623</enddate><creator>Wu, Chao</creator><creator>Kopold, Peter</creator><creator>Ding, Yuan-Li</creator><creator>van Aken, Peter A</creator><creator>Maier, Joachim</creator><creator>Yu, Yan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150623</creationdate><title>Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes</title><author>Wu, Chao ; Kopold, Peter ; Ding, Yuan-Li ; van Aken, Peter A ; Maier, Joachim ; Yu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-51e17ed3c414510faf2463258c030d72508d677594e623d193a9c5b7471321693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Kopold, Peter</creatorcontrib><creatorcontrib>Ding, Yuan-Li</creatorcontrib><creatorcontrib>van Aken, Peter A</creatorcontrib><creatorcontrib>Maier, Joachim</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chao</au><au>Kopold, Peter</au><au>Ding, Yuan-Li</au><au>van Aken, Peter A</au><au>Maier, Joachim</au><au>Yu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-06-23</date><risdate>2015</risdate><volume>9</volume><issue>6</issue><spage>6610</spage><epage>6618</epage><pages>6610-6618</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to the electrodes for sodium-storage, including low reversible capacity and low ion transport, as well as large volume change. To mitigate or even overcome the kinetic problems, we develop a self-assembly route to a novel architecture consisting of nanosized porous NASICON-type NaTi2(PO4)3 particles embedded in microsized 3D graphene network. Such architecture synergistically combines the advantages of a 3D graphene network and of 0D porous nanoparticles. It greatly increases the electron/ion transport kinetics and assures the electrode structure integrity, leading to attractive electrochemical performance as reflected by a high rate-capability (112 mAh g–1 at 1C, 105 mAh g–1 at 5C, 96 mAh g–1 at 10C, 67 mAh g–1 at 50C), a long cycle-life (capacity retention of 80% after 1000 cycles at 10C), and a high initial Coulombic efficiency (&gt;79%). This nanostructure design provides a promising pathway for developing high performance NASICON-type materials for sodium storage.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26053194</pmid><doi>10.1021/acsnano.5b02787</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2015-06, Vol.9 (6), p.6610-6618
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1691015163
source ACS Publications
title Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesizing%20Porous%20NaTi2(PO4)3%20Nanoparticles%20Embedded%20in%203D%20Graphene%20Networks%20for%20High-Rate%20and%20Long%20Cycle-Life%20Sodium%20Electrodes&rft.jtitle=ACS%20nano&rft.au=Wu,%20Chao&rft.date=2015-06-23&rft.volume=9&rft.issue=6&rft.spage=6610&rft.epage=6618&rft.pages=6610-6618&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b02787&rft_dat=%3Cproquest_pubme%3E1691015163%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691015163&rft_id=info:pmid/26053194&rfr_iscdi=true