Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes
Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to t...
Gespeichert in:
Veröffentlicht in: | ACS nano 2015-06, Vol.9 (6), p.6610-6618 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to the electrodes for sodium-storage, including low reversible capacity and low ion transport, as well as large volume change. To mitigate or even overcome the kinetic problems, we develop a self-assembly route to a novel architecture consisting of nanosized porous NASICON-type NaTi2(PO4)3 particles embedded in microsized 3D graphene network. Such architecture synergistically combines the advantages of a 3D graphene network and of 0D porous nanoparticles. It greatly increases the electron/ion transport kinetics and assures the electrode structure integrity, leading to attractive electrochemical performance as reflected by a high rate-capability (112 mAh g–1 at 1C, 105 mAh g–1 at 5C, 96 mAh g–1 at 10C, 67 mAh g–1 at 50C), a long cycle-life (capacity retention of 80% after 1000 cycles at 10C), and a high initial Coulombic efficiency (>79%). This nanostructure design provides a promising pathway for developing high performance NASICON-type materials for sodium storage. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.5b02787 |