Plasticity of astrocytes

It is becoming apparent that astrocytes carry out a large number of different functions in brain and are able to modify their characteristics throughout life, that is they exhibit a high degree of plasticity in their phenotype. For example, the morphology of astrocytes changes markedly during neuron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 1994-06, Vol.11 (2), p.147-155
Hauptverfasser: Shao, Yanping, McCarthy, Ken D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is becoming apparent that astrocytes carry out a large number of different functions in brain and are able to modify their characteristics throughout life, that is they exhibit a high degree of plasticity in their phenotype. For example, the morphology of astrocytes changes markedly during neuronal migration, maturation, and degeneration. It is conceivable that these cells must constantly adjust their abilities to meet changes in brain environment. Several examples of astrocytic plasticity are presented in this review. First, the ability of astrocytes to recognize neuronal signals can change qualitatively as well as quantitatively; evidence suggests that the expression of glial receptors may be developmentally regulated by both intrinsic and extrinsic signals. Second, the expression of adrenergic receptors by astrocytes in adult brain can change in response to neuronal degeneration. The up‐regulation of β‐adrenergic receptors in this case suggests that these receptors play a role in function of reactive astrocytes. Finally, glial morphology can be reciprocally regulated by neurotransmitters such as norepinephrine and glutamate. This reciprocal regulation may be significant since both ß‐adrenergic receptors and glutamate transporters are found predominantly in astrocytes in the brain. The change in glial morphology may also affect neuronal activity by changing the volume of the extracellular space. © 1994 Wiley‐Liss, Inc.
ISSN:0894-1491
1098-1136
DOI:10.1002/glia.440110209