A Functional Group Approach for Prediction of APPI Response of Organic Synthetic Targets

Atmospheric pressure photoionization (APPI) is a technique of choice for ionization of non-polar molecules in mass spectrometry (MS). Reported APPI-based studies tend to focus on a selected compound class, which may contain a variety of functional groups. These studies demonstrate that APPI response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Mass Spectrometry 2015-07, Vol.26 (7), p.1221-1232
Hauptverfasser: Zhurov, Konstantin O., Menin, Laure, Di Franco, Thomas, Tsybin, Yury O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atmospheric pressure photoionization (APPI) is a technique of choice for ionization of non-polar molecules in mass spectrometry (MS). Reported APPI-based studies tend to focus on a selected compound class, which may contain a variety of functional groups. These studies demonstrate that APPI response frequently differs substantially, indicating a certain dependence on the functional group present. Although this dependence could be employed for APPI response prediction, its systematic use is currently absent. Here, we apply APPI MS to a judiciously-compiled set of 63 compounds containing a number of diverse functional groups commonly utilized in synthesis, reactive functional groups, as well as those containing boron and silicon. Based on the outcome of APPI MS of these compounds, we propose and evaluate a simple guideline to estimate the APPI response for a novel compound, the key properties of which have not been characterized in the gas phase. Briefly, we first identify key functional groups in the compound and gather knowledge on the known ionization energies from the smallest analogues containing said functional groups. We then consider local inductive and resonance effects on said ionization energies for the compounds of interest to estimate the APPI response. Finally, application of APPI MS to compounds of interest considered herein demonstrated extended upper mass ionization limit of 3.5 kDa for non-polymeric compounds. Graphical Abstract ᅟ
ISSN:1044-0305
1879-1123
DOI:10.1007/s13361-015-1116-z