DNA Cleavage, antiviral and cytotoxic reactions photosensitized by simple enediyne compounds

Very potent antibiotic antitumor natural products contain a enediyne moiety which, upon thermal activation, is capable of abstracting hydrogens from DNA. 1,6-Diphenyl-3-hexene-1,5-diyne was selected as a candidate for inducing DNA strand breaks photochemically. Easily interconverted with light, both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. B, Biology Biology, 1993-12, Vol.21 (2), p.135-142
Hauptverfasser: Kagan, Jacques, Wang, Xiangdong, Chen, Xinsheng, Lau, Ka Y., Batac, Irenea V., Tuveson, R.W., Hudson, James B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Very potent antibiotic antitumor natural products contain a enediyne moiety which, upon thermal activation, is capable of abstracting hydrogens from DNA. 1,6-Diphenyl-3-hexene-1,5-diyne was selected as a candidate for inducing DNA strand breaks photochemically. Easily interconverted with light, both geometric isomers 1 and 2 were expected to be phototoxic. As anticipated, they photosensitized the production of strand breaks in double-stranded supercoiled pBR322, and in single-stranded M13 DNA. The DNA cleavage reactions were favored by the presence of oxygen and were inhibited by ethanol. Preliminary experiments with the (Z)-isomer indicated moderate light-dependent antiviral activity against human immunodeficiency virus (HIV), Sindbis virus, and mouse cytomegalovirus. The enediynes were cytotoxic to Escherichia coli, a gram-negative organism, to Streptococcus faecalis, a gram-positive organism, to Daphnia magna and to fish ( Pimephales promelas), but only in the presence of light. The production of o-terphenyl, the expected product of Bergman cyclization of 1, could not be confirmed. However, both 1 and 2 photosensitized the formation of singlet oxygen and of superoxide anion radical, and photodynamic reactions could have been responsible for some of the phototoxic reactions observed.
ISSN:1011-1344
1873-2682
DOI:10.1016/1011-1344(93)80175-9