Enhanced Performance of Perovskite CH3NH3PbI3 Solar Cell by Using CH3NH3I as Additive in Sequential Deposition
Sequential deposition is a widely adopted method to prepare CH3NH3PbI3 on mesostructured TiO2 electrode for organic lead halide perovskite solar cells. However, this method often suffers from the uncontrollable crystal size, surface morphology, and residual PbI2 in the resulting CH3NH3PbI3, which ar...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-06, Vol.7 (23), p.12937-12942 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sequential deposition is a widely adopted method to prepare CH3NH3PbI3 on mesostructured TiO2 electrode for organic lead halide perovskite solar cells. However, this method often suffers from the uncontrollable crystal size, surface morphology, and residual PbI2 in the resulting CH3NH3PbI3, which are all detrimental to the device performance. We herein present an optimized sequential solution deposition method by introducing different amount of CH3NH3I in PbI2 precursor solution in the first step to prepare CH3NH3PbI3 absorber on mesoporous TiO2 substrates. The addition of CH3NH3I in PbI2 precursor solution can affect the crystallization and composition of PbI2 raw films, resulting in the variation of UV–vis absorption and surface morphology. Proper addition of CH3NH3I not only enhances the absorption but also improves the efficiency of CH3NH3PbI3 solar cells from 11.13% to 13.37%. Photoluminescence spectra suggest that the improvement of device performance is attributed to the decrease of recombination rate of carriers in CH3NH3PbI3 absorber. This current method provides a highly repeatable route for enhancing the efficiency of CH3NH3PbI3 solar cell in the sequential solution deposition method. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b02705 |